
E-BOOK

Securing the Cloud:
A Guide to Effective
Vulnerability Management

Table of Contents

Vulnerability Management Then and Now

05 The framework

06 Vulnerability management for software that you build

14 Prioritization of vulnerability assessment findings

16 Remediation

17 Mitigation

18 Validation

18 Risk acceptance

19 Reporting

19 The nuances of cloud‑native architectures

20 Vulnerability management deployment methods

21 Integrating into the development life cycle

Conclusion

Vulnerability Management
Then and Now
The approach to vulnerability management has evolved significantly over
time. Previously, people relied on tools like Nessus to scan their data center
networks and identify flaws in third‑party software like operating systems,
web browsers, and network device firmware. The quantity of flaws always
exceeded the quantity of time available to fix them, and good approaches
to prioritize the effort by actual risk to the organization did not emerge until
fairly recently.

Today, the speed of cloud‑based attacks has surged as adversaries leverage
automation and AI techniques. This escalation has underscored the need to
prioritize vulnerabilities based on their actual risk levels.

Securing the Cloud: A Guide to Effective Vulnerability Management 03

In‑house software development is also becoming more prevalent.
Businesses differentiate by creating better software, which gives rise
to new challenges in vulnerability management. New stakeholders
emerge as software development teams and DevSecOps teams enter
the picture, and their incentives heavily prioritize speed of delivery. The

number of flaws increases while the amount of time available to fix them
decreases. Although conventional vulnerability management techniques
are still applicable, this e‑book primarily focuses on addressing the
latest vulnerability management challenges associated with securing
cloud‑native applications.

Vulnerability
Management

Prioritize

Impact

% likelihood

Register CVE ID

• PoC
• Affected Version
• Mitigations

CVSS
Severity Score

Discover
New

Vulnerability

Vulnerability
Management Process

Securing the Cloud: A Guide to Effective Vulnerability Management 04

The framework
While the overarching framework for vulnerability management remains
mostly unchanged, there are some notable differences in the modern software
development landscape. The basic steps of vulnerability management still
include asset identification, scanning, mitigation, remediation, and ongoing
verification.

SEVERITY ANALYSIS

BU
SI

NE
SS

 IM
PA

CT

RUNTIME INSIGHTS FIX ANALYSIS

EXPLOITABILITY AN
ALYSIS

There are, however, several new factors in play when managing vulnerabilities
in modern software development:

• Speed of delivery is a business priority.

Speed is a crucial consideration. In the fast‑paced world of software
development, organizations need to keep up with the latest technologies
and push out new products quickly. This means that vulnerability
management must not hinder the development process or slow
down releases.

• Full-context risk prioritization is a Non-negotiable requirement.

Vulnerability management must be informed by a thorough understanding
of the context in which the software operates. This includes factors
such as the application’s purpose, the types of data it handles, the
running state of the application, and the potential impact of exploiting a
vulnerability. Security teams must prioritize risk accordingly, and address
vulnerabilities that pose the greatest risk to the organization first.

• Developers are a key stakeholder in the vulnerability
management program.

Vulnerability management in modern software development requires
close collaboration with developers. Developers are the ones creating the
software, so remediation often falls squarely on them, and any mitigation
requires their input. It is crucial for security and development teams to
collaborate in order to find and address vulnerabilities promptly. This
relationship does not exist in traditional IT organizational structures.

While the basic framework for vulnerability management has remained
largely unchanged over time, the modern software development landscape
requires a more nuanced approach. Organizations need to balance speed with
security, prioritize risk based on the context in which the software operates,
and involve developers in the process without hindering their agility.

Securing the Cloud: A Guide to Effective Vulnerability Management 05

Vulnerability management
for software that you build
Designing and executing applications at scale in cloud‑native environments
have introduced some new operating models. Many of the underlying concepts
stem from familiar ideas like secure‑by‑design development strategies and
defense in depth. We’ll explore some of the unique nuances and challenges in
this section.

Shi ft left
“Shift left” is a term used in the context of vulnerability management to refer
to the practice of integrating security considerations to catch vulnerabilities
earlier in the software development life cycle (SDLC), rather than waiting
until later in the process (usually at runtime) when they can be more difficult
and costly to fix. This can help improve the overall security posture of the
organization and reduce the potential impact of security breaches.

Traditionally, the focus of vulnerability management has been to identify and
remediate vulnerabilities in deployed applications and systems, often as late
as in production environments. However, this reactive approach can result in
vulnerabilities that are more difficult to remediate and can create significant
security risks, especially at scale.

In rare cases, the remediation of a flaw can require significant rework of the
application logic, placing a huge and avoidable burden on the engineering
teams. By shifting left, organizations can address security issues earlier in
the development process, which can help reduce the number and severity of
vulnerabilities introduced into production environments.

Ful l life-cycle vulnerability management
Full life‑cycle vulnerability management is a crucial aspect of an organization’s
security posture, and it involves managing vulnerabilities throughout the entire
application life cycle. This includes identifying, prioritizing, and remediating
vulnerabilities in a timely and efficient manner.

Traditional vulnerability management programs tend to be scoped to servers,
applications, network devices, and other data center assets. The program
attempts to aggregate the findings from a single scanning tool (like Nessus)
into a central dashboard for the security team to review. Remediation effort
is handed off to the system owners via traditional workflow systems (like
ServiceNow) used in various IT operations teams.

Vulnerability management programs scoped to include cloud‑native or any
homegrown software will need to use additional tooling, such as static
application security testing (SAST), dynamic application security testing
(DAST), software composition analysis (SCA), and developer‑friendly
workflow tools such as Jira.

Securing the Cloud: A Guide to Effective Vulnerability Management 06

Number of CVEs by year

30,000

25,000

20,000

15,000

10,000

5,000

0
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

It is always important to prioritize vulnerability assessment findings by risk
because it’s impossible to fix all of the flaws, especially with the discovery of
new Common Vulnerabilities and Exposures (CVE) every day. The challenge
of knowing where to send those findings and how to ensure that they are
actionable is exacerbated by the complexity of modern architectures and the
involvement of developers, who typically have very little security training.

Whenever possible, organizations should strive to prioritize vulnerabilities by
risk within a scope of remediation accountability, rather than consolidating all
findings into a single platform. Each application or asset owner should care
about the highest risk vulnerabilities in their system. For example, software
developers may not care about vulnerabilities on network switches unless they
wrote the firmware.

Therefore, full life‑cycle vulnerability management should not be a one‑size‑
fits‑all approach, but rather a customized and integrated approach for each
software development organization. Integrating vulnerability management
tools into the DevSecOps pipeline can help ensure the identification of
vulnerabilities early in the development process for remediation before they
become larger problems.

Full life‑cycle vulnerability management should prioritize risk within a
DevSecOps team’s scope of control, and seamlessly integrate with DevSecOps
processes to ensure a timely and efficient response.

Securing the Cloud: A Guide to Effective Vulnerability Management 07

Wher e are the vulnerabilities?
Across the software development life cycle, there are a variety of areas
where vulnerabilities exist. Some of these areas are either nonexistent or not
accessible with traditional vulnerability management programs. A modern
vulnerability management program must scan every possible source of
vulnerability introduced into the software and help identify who is responsible
for addressing these flaws.

Appli cation code
The source code itself is where the vulnerability begins its life, and it is entirely
in the software developer’s scope of responsibility. Training, security champion
programs, and the secure‑by‑design methodology can help developers write
more secure code. Application security testing (AST) tools like linters and
SAST provide assessment capabilities for the code itself.

Git secrets & permissions
Falco GitHub
plugin

Detect secrets
exposed
in public
repository

Fargate
Serverless
Agent

Runtime protection
Secure images in Cloud
Formation scripts

DevOps local
workstation

IaC code Container
imageGit repository

+ CI/CD

GitOps

Container registry

Cloud

Pod Fargate

Node

K8s cluster

IAM

Local vulnerability
scanning

IaC manifest scanning CI/CD scanning Registry scanning

Vulnerability
management

Vulnerability
management

Validate
Configurations

Risk Prioritization

Vulnerability
managementIaC scanning

AWS CodeBuild build
the Docker image.
Sysdig Scan CLI
scans and rejects if
CVE detected

Source: CI/CD integrated vulnerability management

Integrating Vulnerability Scanning
in the Software Development Lifecycle

Securing the Cloud: A Guide to Effective Vulnerability Management 08

Appli cation artifacts
These are vulnerabilities that exist within the artifact, generated after
packaging the source code into its deployable form. For example, Java archive
(JAR) files, which are commonly used to package Java applications, can
introduce vulnerabilities if they contain outdated or vulnerable dependencies.
Who owns the vulnerability assessment of this asset depends on the type of
artifact in question and how the team is organized. Typically, developers are
responsible for ensuring that the artifact they ship to staging environments
is defect‑free to the extent specified by security policies. However, security
teams should use automated tools to scan the application components for
vulnerabilities through all stages of testing and staging.

OSS d ependencies
Many applications rely on third‑party open source software (OSS)
components to function. These components can introduce vulnerabilities if
they are not properly maintained or updated. Developers are responsible for
keeping track of these dependencies and ensuring that they are up to date
and free from vulnerabilities. Security teams should scan for vulnerable OSS
components throughout the continuous integration/continuous delivery (CI/
CD) pipeline. Security and/or DevOps teams sometimes curate and maintain a
registry of pre‑approved OSS and commercial components for developers to
use, disallowing the inclusion of any other packages.

Inclu ded libraries
Similar to OSS dependencies, without proper maintenance and updating,
included libraries can also introduce vulnerabilities. Developers are responsible
for keeping track of the libraries they use and ensuring that they are up to
date and free from vulnerabilities. Security teams should scan for vulnerable
libraries throughout the CI/CD pipeline.

Securing the Cloud: A Guide to Effective Vulnerability Management 09

Conta iner images
Container images are a special type of application delivery vehicle that include
everything an application needs to function in a single package. They allow
for easy and rapid portability between platforms and alleviate “works on
my machine” dependency problems. Vulnerabilities can exist within multiple
layers of container images. Developers are responsible for ensuring that
the image layers containing application artifacts and enabling architecture
components are up to date and free from vulnerabilities before deployment.

However, IT operations, DevOps, or security teams may be responsible for
maintaining the base image layers, which include the operating system.
Security teams should also use dedicated container scanning tools to identify
vulnerabilities in container images throughout the CI/CD pipeline. Most
traditional vulnerability management tools do not provide any visibility into
container images or running containers.

Hosts /nodes
The underlying infrastructure that supports cloud‑native applications,
such as Linux servers or infrastructure‑as‑a‑service (IaaS) platforms, can
also introduce vulnerabilities if security teams are not properly securing or
maintaining these assets.

An improperly secured infrastructure supporting cloud‑native applications,
such as Linux servers or IaaS platforms, can introduce vulnerabilities.
Breached containers usually have limited impact, but a breached host can be
a huge security risk. Although container hosts are disposable, they remain
a risk. Immutable operating systems like Container Linux (formerly CoreOS),
RancherOS, Red Hat Enterprise Linux Atomic Host, and Ubuntu Core are
image‑based, safer, and more focused on running containers. Operations
teams are typically responsible for securing the underlying infrastructure.
Legacy tools may not be able to scan special operating systems for
running containers.

Orches tration systems (Kubernetes)
In traditional monolithic architectures, each application typically runs on its
own dedicated infrastructure with its own set of permissions. This means that
if one application has a vulnerability, it is less likely to affect other applications
running on the same infrastructure. In a Kubernetes environment, however,
multiple applications may run on the same infrastructure, and a compromised
plug‑in can potentially affect multiple applications at once.

Kubectl plug-ins are a gateway for vulnerabilities

Kubectl plug‑ins are external binaries that users can invoke through the
kubectl command‑line tool to extend its functionality. When running a kubectl
plug‑in, it runs with the same permissions as the kubectl command itself. If
you run the kubectl command with root privileges, the plug‑in will also have
root privileges.

Having the same permissions can be a unique problem for the Kubernetes
orchestration platform because Kubernetes is designed to run multiple
containers on a single host, each with its own set of permissions. A
compromised kubectl plug‑in can potentially access or modify any resource
within the cluster, including other containers or nodes. Who is actively
maintaining these plug‑ins? If there’s a CVE in one of these plug‑ins, how do
you handle unpatchable vulnerabilities?

To address this challenge, it is important to carefully manage the permissions
granted to kubectl and its plug‑ins. This may involve limiting the use of
plug‑ins to trusted sources or auditing the code of plug‑ins before using them
in production environments. Additionally, vulnerability scanning in Kubernetes
environments should be a continuous process, with regular scans to identify
and mitigate any vulnerabilities discovered.

Securing the Cloud: A Guide to Effective Vulnerability Management 10

Unpatchable vulnerabilities

The issue with unpatchable vulnerabilities in Kubernetes, such as CVE-2020-
8554, is that they represent a potential security risk that traditional patching
or remediation methods cannot fully eliminate. These vulnerabilities are often
the result of fundamental design flaws or limitations in the technology itself.

In cases where there are known, unpatchable vulnerabilities in Kubernetes,
there are a few steps that organizations can take to protect themselves. One
option is to use a tool like Open Policy Agent (OPA) to enforce strict policies
around the use of Kubernetes resources and configurations. By setting up
policies that restrict certain actions or configurations that could lead to
exploitation of the vulnerability, organizations can reduce the risk of an attack.

Alternatively, you can monitor the environment for signs of exploitation
or compromise using a tool like Falco. This can involve setting up alerts
and monitoring systems to detect any unusual activity or changes in the
Kubernetes cluster, as well as conducting regular security audits to identify
potential vulnerabilities.

Unfortunately, the best approach will depend on the specific vulnerability
and the risk it poses to the organization. In some cases, it may be possible
to mitigate risk through policy enforcement and monitoring, while in other
cases, it may be necessary to take more drastic measures, such as limiting or
disabling certain features or functions within Kubernetes. It is important to
work closely with security experts and the Kubernetes community to stay up
to date on the latest vulnerabilities and mitigation strategies.

Shared responsibility model of IaaS offerings

The shared responsibility model in the cloud refers to the fact that cloud
providers are responsible for the security of their underlying infrastructure,
while customers are responsible for the security of their own applications and
data that resides on the cloud infrastructure.

Securing the Cloud: A Guide to Effective Vulnerability Management 11

https://sysdig.com/blog/detect-cve-2020-8554-using-falco/
https://sysdig.com/blog/detect-cve-2020-8554-using-falco/

While this model can be beneficial in many ways, it can also lead to some
challenges when it comes to vulnerability detection and mitigation. One
example is the case of managed Kubernetes services, like Google Kubernetes
Engine, Amazon Elastic Kubernetes Service, and Azure Kubernetes Service.
While these services provide a convenient and scalable way to deploy
and manage Kubernetes clusters, they also limit your control over the
underlying infrastructure. This can make it challenging to detect and mitigate
vulnerabilities that may exist in the infrastructure or in the Kubernetes
cluster itself.

One approach to addressing this challenge is to use third‑party vulnerability
scanning tools specifically designed to scan Kubernetes clusters. These tools
can help identify vulnerabilities in both the infrastructure and the applications
running on the cluster, and can provide recommendations for how to mitigate
those vulnerabilities.

We recommend working closely with the cloud provider to ensure that they
are meeting their responsibilities for securing the underlying infrastructure. For
example, you can ask them to perform regular security audits or penetration
testing on the infrastructure to ensure that it is secure. In reality, the cloud
provider can do a “best effort” at updating vulnerable components, but
likely cannot make radical changes for all customers based on individual
feature requests.

Third- party architecture components (middleware)
Cloud‑native applications often rely on third‑party OSS or commercial
architecture components, which are essentially modern middleware and include
things like load balancers and databases. Without proper maintenance and
updating, these components can also introduce vulnerabilities. Developers are
responsible for keeping track of these components and ensuring that they are up
to date and free from vulnerabilities. Because they are not built in‑house, these
pieces of software often bypass CI/CD security controls (and thus the pipeline
altogether) and may not be assessed until runtime. According to the “Sysdig
2023 Cloud-native Security and Usage Report,” only 42% of vulnerability scans
are performed at the CI/CD pipeline phase. Ideally, security teams will scan for
vulnerable architecture components throughout the CI/CD pipeline.

50%

In CI/CD pipeline
42%

In registry
8%

At runtime

Where images are scanned

Identifying and fixing vulnerabilities requires a collaborative effort
between different teams, including developers, security professionals,
and operations teams. By staying vigilant and regularly scanning for
vulnerabilities, organizations can help ensure the consistent security of their
cloud‑native applications.

Securing the Cloud: A Guide to Effective Vulnerability Management 12

https://dig.sysdig.com/c/pf-2023-cloud-native-security-and-usage-report?x=u_WFRi&mkt_tok=MDY3LVFaVC04ODEAAAGKsokecPLnWazfiVKrtYyVVyMz6aIR47Em6DLiEui8KohI4j0KjYt2VSN6ES7T8Itjm7ry67lvwOA7yE6SdB81HGKDGU8tpQt8do-wpJ6TQ1Vn
https://dig.sysdig.com/c/pf-2023-cloud-native-security-and-usage-report?x=u_WFRi&mkt_tok=MDY3LVFaVC04ODEAAAGKsokecPLnWazfiVKrtYyVVyMz6aIR47Em6DLiEui8KohI4j0KjYt2VSN6ES7T8Itjm7ry67lvwOA7yE6SdB81HGKDGU8tpQt8do-wpJ6TQ1Vn

When ar e the vulnerabilities discovered?
Based on the above information, when is it appropriate to scan for
vulnerabilities in cloud‑native environments? The short answer is through
every stage of the CI/CD pipeline, and then constantly in production to account
for any disclosures that occur after deployment.

On devel oper machine before merge
One best practice is to scan for vulnerabilities on the developer’s machine
before merging the code with the main branch. This can help catch
vulnerabilities early in the development process, when they are typically easier
and cheaper to fix. Developers can use tools such as dependency checkers
and static analysis tools to scan their code for vulnerabilities.

In the C I/CD pipeline
Another best practice is to incorporate vulnerability scanning into multiple
stages of the CI/CD pipeline. This ensures the scanning of code for
vulnerabilities each time it is built and deployed. Vulnerability scanning can
introduce a high degree of automation to vulnerability discovery, which is
good for supporting delivery speeds. However, the tailoring of pass/fail gates
can pose difficulties and requires careful consideration in the context of each
organization’s specific risk appetite.

Code CI/CD Staging Repository Prod RepositoryImage Scanning

Pass

Security Policies

WarnFail

CI/CD Pipeline
Vulnerability Scanning

Securing the Cloud: A Guide to Effective Vulnerability Management 13

Registri es
Cloud‑native applications are often deployed using container images, which
are stored in registries. Noncontainerized artifacts also live in registries. Most
organizations have many different types of registries. Before deploying an
artifact, it’s important to scan it for vulnerabilities. Registry scans can occur
multiple times in the life cycle, but it’s absolutely critical to ensure that the
production registry is clean.

Runtime
While it’s best to catch vulnerabilities as early as possible, it’s also important
to scan for vulnerabilities at runtime. This can help identify vulnerabilities
missed during earlier stages of the development process, vulnerabilities
introduced during runtime, or vulnerabilities disclosed after the last scan
occurred. Regular runtime scanning can ensure the identification and prompt
addressing of any vulnerabilities. It’s worth noting that “runtime” can mean
staging or production, and ideally, the teams have full scanning capability in
both types of runtime environments.

We cannot stress enough the importance of incorporating vulnerability
scanning into the various stages of the development process. This will
ultimately help ensure the security of your cloud‑native environments. By
catching vulnerabilities early and regularly scanning for them, organizations
can help minimize the risk of cyberattacks and protect their sensitive data.

Prioritization of vulnerability
assessment findings
Arguably, one of the hardest aspects of vulnerability management is
prioritization, as not all vulnerabilities have the same level of risk, and
you must allocate resources efficiently to address the most critical ones
first. This guide provides a comprehensive framework for categorizing
vulnerabilities based on their potential impact on your organization’s assets,
services, and operations. By following these guidelines, you can prioritize
your vulnerability management efforts and ensure that your teams focus on
the most critical issues.

Risk contextualization is an approach taking into account the specific
context and environment in which vulnerabilities exist. It involves analyzing
the severity of the vulnerability, the assets at risk, the potential attackers
and their motivations, the available mitigation options, and more.

To highlight the importance of risk contextualization in prioritizing targeted
controls to mitigate workload and cloud‑based threats, we use a two‑part
framework to think about vulnerability risk:

• Vulnerability threat context comes from the threat intelligence
surrounding the vulnerability itself, regardless of which assets, if any,
it is affecting. It includes information like whether an exploit is publicly
available or likely to become available soon, whether the exploit is easy
to execute, and whether the exploitation of this flaw is popular among
attackers today.
Threat context data usually comes from third‑party sources, and
could be in machine‑readable form or in the form of a report. Many
vulnerability assessment tools integrate threat intelligence sources to
help prioritize the scan results within their interface. Security teams can
manually gather additional threat contexts from public and commercial
sources like Exploit Database, Metasploit Framework, and others.

Securing the Cloud: A Guide to Effective Vulnerability Management 14

https://www.exploit-db.com/
https://github.com/rapid7/metasploit-framework

• Affected asset business context considers the importance of the assets
within your organization that can be affected by any given vulnerability,
and the potential impact to your business should that asset be abused.
Additionally, it includes the details of your environment, such as the
asset’s accessibility from the internet or what mitigating controls may be
in place to protect it.

Risk contextualization enables organizations to prioritize vulnerabilities based
on their potential impact on the business and the likelihood of successful
exploitation in the specific context of their environment. This approach helps
optimize resource allocation, reduce risk exposure, and enhance the overall
security posture of the organization.

There are dedicated frameworks such as the Stakeholder-Specific
Vulnerability Categorization (SSVC), a vulnerability management
methodology that assesses vulnerabilities and prioritizes remediation efforts
based on exploitation status, impacts to safety, and prevalence of the affected
product in a singular system.

There are also frameworks for calculating a risk score like the Exploit
Prediction Scoring System (EPSS). EPSS is a scoring model that predicts
the likelihood of a vulnerability being exploited. In general, commercial
vulnerability assessment tools have risk‑based prioritization built in and tied to
an actionable remediation workflow.

Runtime risk intelligence for cloud-native
applications
The methodology above applies to any vulnerability management program, but
when handling homegrown software, there are some additional considerations.
Building software packages with only necessary dependencies is important for
reducing complexity and minimizing the risk of vulnerabilities. However, even
with careful selection of dependencies, it’s possible that some unnecessary
ones may slip through the cracks. Operating system packages, in particular,
include a lot of unnecessary components that may contain vulnerabilities
but that your application never uses. In fact, the “Sysdig 2023 Cloud-native
Security and Usage Report” stated that operating system packages contained
37% of vulnerabilities. This can lead to bloat in the package and make it
difficult to identify which dependencies you are actually using.

A recent innovation in cloud‑native risk prioritization is runtime insights,
which provides visibility into which dependencies your application is actually
using in runtime and prioritizes them based on their real risk. This allows
your development teams to focus their efforts on addressing the most critical
vulnerabilities and reducing the impact of cyberattacks on your business.
By eliminating unnecessary dependencies and prioritizing those actually in
use, you can streamline your software package and improve the security and
stability of your applications.

Securing the Cloud: A Guide to Effective Vulnerability Management 15

https://www.cisa.gov/stakeholder-specific-vulnerability-categorization-ssvc
https://www.cisa.gov/stakeholder-specific-vulnerability-categorization-ssvc
https://www.first.org/epss/
https://www.first.org/epss/
https://sysdig.com/content/c/pf-2023-cloud-native-security-and-usage-report?x=u_WFRi&mkt_tok=MDY3LVFaVC04ODEAAAGKsokecPLnWazfiVKrtYyVVyMz6aIR47Em6DLiEui8KohI4j0KjYt2VSN6ES7T8Itjm7ry67lvwOA7yE6SdB81HGKDGU8tpQt8do-wpJ6TQ1Vn
https://sysdig.com/content/c/pf-2023-cloud-native-security-and-usage-report?x=u_WFRi&mkt_tok=MDY3LVFaVC04ODEAAAGKsokecPLnWazfiVKrtYyVVyMz6aIR47Em6DLiEui8KohI4j0KjYt2VSN6ES7T8Itjm7ry67lvwOA7yE6SdB81HGKDGU8tpQt8do-wpJ6TQ1Vn
https://sysdig.com/blog/why-practitioners-need-cnapp-with-runtime-insights/

Remediation
At some point, you will need to either fix or mitigate vulnerabilities in your
organization’s systems and applications. Effective remediation requires identifying
and prioritizing vulnerabilities based on their severity and impact, as discussed
in the previous section. We already mentioned that the teams responsible
for performing the remediation can vary depending on which environments,
applications, or even individual components the vulnerability affects.

Asset in ventory
The first step to enabling a smooth workflow is maintaining an accurate
asset inventory, with an owner assigned to every entry. Because cloud‑native
applications tend to be highly distributed and complex, keeping track of them isn’t
easy.

In the context of ephemeral workloads, tagging can help organizations keep
track of their assets in real time. Ephemeral workloads create and destroy assets
constantly, which can make it difficult to maintain an accurate inventory. By using
tags, you can quickly identify which assets are currently in use and which ones
have been decommissioned, as well as who the application owners are and what
constraints or requirements may be associated with the workload.

You can also use tagging to enforce compliance checks. You could assign
specific tags to assets that must comply with strict security requirements,
such as access controls or encryption. In the case of vulnerable images, we can
state that an image do not comply with those rigorous compliance standards,
and therefore cannot be used in Federal Risk and Authorization Management
Program environments.

One of the most important capabilities of the modern cloud‑native application
protection platform (CNAPP) is integrating different risk indicators into the
asset inventory module. For example, with a very simple query, a user can list
all resources vulnerable to a specific CVE, exposed to the internet, and have the
vulnerable library in use.

Securing the Cloud: A Guide to Effective Vulnerability Management 16

Remediat ion responsibility
Who is actually capable of performing the remediation has never been
simple to answer, but the nature of cloud‑native applications exacerbates the
problem further. For example, different layers of a container image can be the
responsibility of different people or teams. An IT ops or DevOps team might
own the operating system layers, but a development team might own the
application layers.

Similarly, developers may own fully custom‑built components of an
application, while another team may own third‑party components and
middleware. It’s critical that the security function that performs the scanning
hands off remediation responsibility to the right people and in a rigorously
risk‑prioritized way, with the understanding that DevOps teams do not usually
have the security expertise to properly prioritize remediation work.

Metrics and incentives
A key aspect of secure vulnerability management is ensuring that remediation
efforts are timely and effective in addressing vulnerabilities that attackers
could exploit. However, different technical teams involved in this process
may have competing metrics and incentives. Businesses reward developers
for shipping a lot of features as quickly as possible because that ultimately
creates value.

Security, on the other hand, must protect the business from harm, so each
flaw that slips into production is an additional source of risk. As such, modern
organizations must leverage automation, risk‑based prioritization, and new
tools like admission control to optimize the release of safe software quickly.
Ultimately, a culture shift is required, and security and engineering leaders
alike must incentivize their teams to work together to avoid the adversarial
relationships that plagued traditional vulnerability management.

Mitigation
The recent 5/5/5 benchmark report shed light on the time it takes attackers
to cause harm once they exploit vulnerabilities. In some cases, the time to
respond, whether by remediation or mitigation, should be less than 5 minutes.
That’s why vulnerability mitigation is an important step in the vulnerability
management process, where identified vulnerabilities are temporarily
addressed to minimize their impact while awaiting a more permanent solution.
In some cases, remediation of the vulnerabilities may require significant
disruption to a system or process; therefore, mitigation is a temporary
holdover until it is possible to properly execute the remediation.

In an ideal world, this would mean fixing it: updating the package or library
to a version that contains the fix for the aforementioned vulnerability in the
source code (patch) and then triggering a new deployment for that particular
piece of software, which could include building the artifact, performing the
tests required, etc., and finally deploying it into the production environment.

A significant hurdle to overcome with respect to remediation is how to quickly
patch every single potentially impacted or exploitable asset or dependency;
these processes also need to be able to scale. It’s not trivial to patch old
versions that could impact new features or poor performance. Transitive
dependencies exacerbate the problem; in other words, your code or system
likely relies on many other codebases or systems, and dependency chains
become quite nested in practice.

Including as much context as possible for developers to fix the vulnerability
is important to avoid wasting time on figuring out who is responsible or even
how to fix it.

Unfortunately, it is not always possible to fix a vulnerability. Maybe the fix is
not available yet, requiring more time to test that it doesn’t break anything
else, or any other million reasons.

Securing the Cloud: A Guide to Effective Vulnerability Management 17

https://sysdig.com/content/c/pf-the-555-benchmark-for-cloud-detection-and-response?x=u_WFRi

There are a few approaches if that’s the case:

• Downtime. If the potential breach is big enough, perhaps the affected
application shouldn’t be running. When the Log4j vulnerability was found,
Quebec shut down 3,992 websites as a “preventive measure.”

 − If the vulnerability is focused on a specific feature, it may be possible to
disable just that particular feature using feature flags.

• Hardening. You can try to prevent the exploitation of the vulnerability by
making some changes to the application or the system if possible.

 − If the vulnerability can be network‑exploitable, consider enforcing the
security groups or Kubernetes network policies. For example, here is a
network policy to block all of the egress traffic for a specific namespace:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

Metadata:

 name: default-deny-egress

 namespace: default

Spec:

 podSelector: {}

 policyTypes:

 - Egress

• Monitoring. Monitor the system for suspicious activity and respond
when necessary.

This last step overlaps with a whole security category called threat detection
and response.

By using a runtime detection engine tool like Falco, you can detect attacks that
occur in runtime.

Let’s assume that the attacker exploits a vulnerability and wants to open
a reverse shell on a pod. In this case, the Falco runtime policies in place will
detect the malicious behavior and raise a security alert.

Validation
One process associated with remediation is confirming the successful
remediation of a vulnerability. To do this, you will need to verify that the
remediation efforts were successful such that the vulnerability is no longer
present, and that the organization’s systems and applications are secure.

Validation can occur through various means, such as manual testing,
automated scanning, or third‑party assessments. Most tools’ reporting
capabilities allow you to run a before‑and‑after report to verify that a CVE is
no longer present in your environment.

Risk acceptance
Sometimes, it is not possible to fix a vulnerability, either because there may
not be a fix available yet, it will take some time because of organizational
processes, or simply because it is a false positive.

In those scenarios, it can be helpful to make a conscious decision to filter out
(accept) those vulnerabilities so that they don’t affect the report results. But it
is important to have a clear understanding of the consequences, and to put in
place some methods (such as reminders) to review whether you can remove
the filter.

Securing the Cloud: A Guide to Effective Vulnerability Management 18

https://sysdig.com/blog/exploit-detect-mitigate-log4j-cve/
https://montreal.ctvnews.ca/quebec-shuts-down-3-992-websites-as-preventative-measure-after-security-flaw-discovered-1.5704258
https://martinfowler.com/articles/feature-toggles.html
https://sysdig.com/blog/aws-security-groups-guide/
https://sysdig.com/learn-cloud-native/detection-and-response/what-is-threat-detection-and-response-tdr/
https://sysdig.com/learn-cloud-native/detection-and-response/what-is-threat-detection-and-response-tdr/
https://falco.org/

Reporting

Reporting the results of a vulnerability assessment is a key part of this
process, and it will take on a different form depending on the target audience.
All scanning tools should be able to create some kind of report, but their
content and structure are often inconsistent.

One consideration is that reporting to senior leadership should be far less
granular than reporting to technical teams. Executive reports must include
high‑level program metrics, preferably showing trends over time. Technical
reports should be structured in a way that is most useful to the team receiving
the information. Effective reporting requires clear and concise communication
that highlights any problems within the vulnerability program, not just a list of
identified CVEs.

The nuances of cloud-native
architectures
Cloud‑native architectures have several additional nuances when it
comes to vulnerability scanning. These unique considerations stem
from the nature of modern architectures and the increasing degree of
automation that IT requires today. Here are some of the characteristics of
cloud‑native architecture:

• A high degree of environmental complexity.

Cloud‑native architectures rely on microservices, which are small,
independent components that perform a specific function. This
can make it more difficult to scan for vulnerabilities because the
components may be spread across multiple hosts or data centers and
may have different security requirements.

• The ephemeral nature of infrastructures.

Cloud‑native architectures are designed to be ephemeral, meaning
that the clusters, hosts, pods, and containers are intended to be
created and destroyed regularly and frequently. But the dynamic
provisioning and deprovisioning of infrastructure components in
response to system or customer demand can pose challenges for
vulnerability scanning because the components may not exist long
enough to be scanned. The IP address and container ID will change,
and therefore will not be easily trackable.

• Immutable components.

Cloud‑native infrastructure and application components should be
immutable. This means that changes to the infrastructure should be
made by creating new instances rather than modifying existing ones.
This approach can make it more difficult to scan for vulnerabilities
because the infrastructure components are constantly being replaced.

Securing the Cloud: A Guide to Effective Vulnerability Management 19

• Massive scalability.

Cloud‑native architectures are designed to be elastic and scalable, which
means that they can easily be expanded or contracted as needed. This
can pose challenges for vulnerability scanning because the infrastructure
components may be spread across multiple hosts or data centers.

• Workflow automation.

Cloud‑native architectures are designed for automation to manage
infrastructure components quickly and scalably. This automation can
make it more difficult to perform vulnerability scanning because it may be
necessary to integrate the scanning process into the automation tools.

This section explored some additional details that can either impede or bolster
your vulnerability management program. Not every program can address
every nuance from the beginning, but as your organization increases its
DevSecOps maturity, these elements will certainly become relevant.

Vulnerability management
deployment methods
In cloud‑native environments, there are two different ways to implement
vulnerability management solutions: agentless‑based deployment or agent‑
based deployment. Each method has its pros and cons.

 Agentless scanning
Agentless vulnerability management solutions leverage existing cloud
providers’ APIs to discover and scan resources very fast. They create a
snapshot of existing volumes and then run the vulnerability management
analysis against the snapshot. In general, agentless scanning is fast,
easy to onboard, requires less maintenance, and is less disruptive to the
running workload.

However, in some cases, using agentless scanning alone comes with certain
limitations in system visibility. For example, it does not provide insights into
whether vulnerable packages are already in use and loaded into the system
memory. Additionally, agentless scanning lacks real‑time visibility, potentially
causing it to miss information about intermediate states of the system
between scans.

 Agent-based scanning
On the other hand, deploying software agents on cloud‑computing workloads
allows organizations to gain more comprehensive insights into processes,
users, file activity, network connections, and other system‑specific details.
This enables more effective cloud threat detection and response capabilities,
including advanced techniques such as behavioral analysis and machine
learning algorithms.

Securing the Cloud: A Guide to Effective Vulnerability Management 20

If incorporating both agentless and agent‑based approaches, the initial
deployment will be much easier via agentless, while using the agent will
give you deep visibility and stronger security as you progress in your cloud
security journey. This flexible and comprehensive approach allows for greater
protection and enables organizations to effectively adapt to evolving security
challenges as they mature their cloud presence.

Integrating into the
development life cycle
Scanning for vulnerabilities is a best practice and a must-have step in the
application life cycle to prevent security attacks. It is also important where you
perform this step, but why?

Application life cycles involve a number of steps, from the developer workstation
creating fine art in the shape of lines of code to the final production environment
where customers use a web application, mobile application, or anything
else. Vulnerabilities can occur in any of these steps, so we highly recommend
establishing some barriers to prevent them from ruining your environment.

The “defense in depth” concept recommends performing automatic vulnerability
scanning on different steps of the application life cycle – sometimes even
overlapping them – which will reduce the number of vulnerabilities introduced
into your production environment.

In today’s ever‑evolving threat landscape, it’s becoming increasingly clear
that vulnerability scanning before production is not sufficient. That is because
new vulnerabilities are constantly being disclosed, and unexpected behavior
can occur during runtime. As such, vulnerability scanning processes should

• Artifact scaning (container
images)

Registry scanning
• Host scanning

Node
• Artifact scanning

(container images)
• Continuous image

scanning

Pod• Code scanning (Static
Application Security Testing
(SAST) and Dynamic application
security testing (DAST)

• Artifact scaning (container
images)

CI/CD scanning

DevOps local
workstation

Container
image

Container
& app code Git repository

+ CI/CD Container registry

Cloud

Pod

Node

K8s cluster

Local scanning
• Code scanning (Static

Application Security Testing
(SAST) and Dynamic application
security testing (DAST)

• Artifact scaning (container
images)

Securing the Software
Development Lifecycle

Securing the Cloud: A Guide to Effective Vulnerability Management 21

https://sysdig.com/blog/vulnerability-assessment/
https://en.wikipedia.org/wiki/Defense_in_depth_(computing)

adopt a complete or comprehensive vulnerability assessment approach that
emphasizes the importance of thoroughly assessing vulnerabilities without
any preconceived trust assumptions.

What if someone bypassed the CI/CD and pushed the container image
directly? What about those images scanned weeks ago? Were new
vulnerabilities discovered since that last scan?

It is also important to note that fixing vulnerabilities earlier in the software
development process is easier and that every step of the process makes things
more complicated. That’s why shifting left improves the overall security posture
of the organization and reduces the potential impact of security breaches.

C I/CD
Let’s assume that you already fixed all of your vulnerabilities by updating the
libraries’ dependencies and submitted the pull request. The next step in the
build chain is usually to run a CI/CD pipeline to build the application, build
the container image, run some tests, and check for vulnerabilities again. But
why again?

• Who can guarantee that the developers performed the vulnerability
scan religiously, locally at their workstations, before submitting the
pull request?

• What if the developer performed the scan a couple of days ago, but there
is now a new vulnerability?

CI/CD pipelines are basically made up of different steps. A very basic example
can be something like:

• Check out the code.

• Run some linting to make sure the build won’t fail.

• Build the artifact.

• Perform some unit tests.

• Deploy the artifact.

But these steps can also be complex; it depends on the requirements of the
application or the environment itself. Fortunately, there can be as many steps
as you need – even multiple steps happening at the same time. Adding as
many security checks as possible in a CI/CD pipeline is a good idea.

Let’s see a more complex example. This time, the application is packaged as a
container image:

• Check out the code.

• Run some linting to make sure the build won’t fail.

• Check for vulnerabilities on the dependencies.

• Check for misconfigurations or secrets.

• Perform a static code scan.

• Build the application and container image.

• Check for vulnerabilities on the container image.

• Perform some unit tests.

• Deploy the artifact.

Why check for vulnerabilities on the container image again? The answer is
simple: What if the image used as a base already has vulnerabilities?

Ultimately, the goal is to deploy workloads to the production environment that
are as clean as possible and within the company’s security and compliance
standards. CI/CD enables a lot of automation of the security assessment and
remediation of any software your organization builds, at speeds that were
previously unimaginable.

Securing the Cloud: A Guide to Effective Vulnerability Management 22

https://sysdig.com/learn-cloud-native/container-security/cicd-pipeline/

B inaries, packages, and language
intricacies
Package managers are the common approach when installing software
in container images or host operating systems. Tools like apt or dnf
make it really easy to install, update, and manage the software. Most of
those tools use a database to store the metadata about the packages,
such as when it was installed, the dependencies, the versions, the files
included in a package, etc.

Using the package version, it is trivial to check against the vulnerability
databases to see if it is vulnerable or not. In the following example, let’s
manually check whether the curl version in a Debian system is affected
by any vulnerability in the Debian vulnerability database:

Source: Debian.org

Securing the Cloud: A Guide to Effective Vulnerability Management 23

https://security-tracker.debian.org/tracker/source-package/curl

But what about binaries that are not installed using package managers?
Golang binaries are the classic example of applications that are just a single
binary copied into a container image, like this:

Build

FROM golang:1.16-buster AS build

WORKDIR /app

COPY go.mod ./

COPY go.sum ./

RUN go mod download

COPY *.go ./

RUN go build -o /helloworld

Deploy

FROM gcr.io/distroless/base-debian10

WORKDIR /

COPY --from=build /helloworld /helloworld

USER nonroot:nonroot

ENTRYPOINT [“/helloworld”]

There are no package managers involved; instead, a helloworld binary has
been compiled from source code and then copied into the final container
image. How can you check to see if it included any vulnerable dependency?

In this particular example of using go, the go build command embeds some
information about the dependencies (debugging information) into the binary
itself by default (it can be disabled) so that they can be extracted (using
https://pkg.go.dev/debug/buildinfo, for example) and then performs the
matching against a vulnerability database. For golang, that would be the
Go Vulnerability Database.

Some programming languages don’t include that information; they expect you
to know the dependencies they are using implicitly (the package.json file for
Node.js, for example).

The best approach to solve this problem would be for every piece of software
included in the container image to have its own software bill of materials
(SBOM) so that the vulnerability scanning tools could easily extract them and
compare them against the vulnerability databases.

Unfortunately, the SBOM is frequently unavailable or incomplete. In such
cases, you must rely on dependency mapping tools (such as Checkov) and
ensure that your teams understand the particular behaviors of the languages
and package managers that they use.

 SBOMs
SBOMs are useful for vulnerability management because they provide
an inventory of software components used in an organization’s systems
and applications, enabling the identification of vulnerabilities and the
prioritization of remediation efforts. SBOMs include a detailed list of software
components, including version numbers and dependencies, which can
be integrated with vulnerability scanning tools to automatically identify
vulnerable software components.

By having a complete inventory of software components, security teams
can more accurately assess the risk of software vulnerabilities and identify
potential vulnerabilities before they are exploited. Ideally, every piece of
software should generate and publish its own SBOMs, but tools like syft can
generate them from file systems or container images.

Creating and maintaining an accurate SBOM can be challenging in complex
software environments with many dependencies. Some components may
be buried deep within the software stack or may exist in multiple places,
making it difficult to identify and track them all. Additionally, software
components may change frequently, and it can be challenging to keep the
SBOM up to date.

Securing the Cloud: A Guide to Effective Vulnerability Management 24

https://pkg.go.dev/debug/buildinfo
https://pkg.go.dev/vuln/
https://sysdig.com/blog/sbom-101-software-bill-of-materials/

 Update in flight or destroy and redeploy
Traditional IT management likes to touch running systems to make
necessary changes and updates at runtime. This goes against the
immutable philosophy of the cloud, but not all applications in the cloud
are fully cloud‑native on the day they land there. For example, many
cloud migrations include an application refactoring effort that can take
a long time. In the early stages, the application may have a monolithic
core with microservices around it as components are broken off into a
more distributed architecture. In this case, the core may be managed in a
“legacy” way, while the newer microservices are treated as immutable.

Containers, in particular, were intended by design to be strictly immutable,
which is why images are rebuilt and redeployed any time a change needs
to be made. But is this always the right approach?

Using the latest package versions is always a good idea because
they should contain less vulnerable software. The main concern when
updating the container image packages is if by updating the packages/
dependencies, the container image behavior or application breaks or
behaves differently. To avoid this, having a proper life‑cycle process
to conduct proper testing before running the container image in the
production environment is a must.

 Pinning image versions
Sometimes, the image you scan is not the same one deployed in your
Kubernetes cluster. This can happen when you use mutable tags, like
“latest” or “staging.” Such tags are constantly updated with newer
versions, making it hard to know if the latest scan results are still valid.

Scanned

Scanned

Scanned

a0fd

a0fd

a0fd

a0fd

:latest

Source: Sysdig blog

Securing the Cloud: A Guide to Effective Vulnerability Management 25

https://sysdig.com/blog/toctou-tag-mutability/
https://sysdig.com/blog/toctou-tag-mutability/

Using mutable tags can cause the deployment of containers with different
versions from the same image. Beyond the security concerns from the scan
results, this can cause problems that are difficult to debug. Imagine the
following scenario:

• An application was already deployed using the :latest tag two weeks ago,
and it is running properly.

• Suddenly, a traffic peak requires deploying another instance of that same
application on another node that didn’t have the container image cached,
so it will pull the :latest one, which depending on the timing of the latest
build process will include different package versions.

For example, instead of using ubuntu:focal, you should enforce the use of
immutable tags like ubuntu:focal-20200423 when possible.

Keep in mind that for some images, version tags tend to be updated with
minor, nonbreaking changes. So although it looks a bit verbose, the only option
to ensure repeatability is to use the actual image ID:

❯ ubuntu:@sha256:d5a6519d9f048100123c568eb83f7ef5bfcad69b01424

f420f17c932b00dea76

❯ podman images --digests

REPOSITORY TAG DIGEST

IMAGE ID CREATED SIZE

docker.io/library/busybox latest

sha256:7b3ccabffc97de872a30dfd234fd972a66d247

c8cfc69b0550f276481852627c abaa813f94fd 2 months ago 3.96 MB

docker.io/kindest/node <none>

sha256:f52781bc0d7a19fb6c405c2af83abfeb311f13070

7a0e219175677e366cc45d1 476b7007f4f5 4 months ago 828 MB

 Container build caching
A fully immutable approach would necessitate rebuilding the entire image
from start to finish every time something changes. However, some images
are very large and have quite a complex build process. In such cases, image
caching can avoid rebuilding all of the enabling layers that are not affected
by the change. Caching increases how quickly you can update, but it can
be dangerous.

Consider the following Dockerfile:

FROM ubuntu:focal

RUN apt-get update && \

 apt-get upgrade -y && \

WORKDIR /

COPY ./helloworld /helloworld

USER nonroot:nonroot

ENTRYPOINT [“/helloworld”]

Securing the Cloud: A Guide to Effective Vulnerability Management 26

The first problem is that if you don’t re‑pull the base image (ubuntu:focal), it
will be reused on every build. Fortunately, the docker build command includes
the ‑‑pull flag, which will always attempt to pull a newer version of the image.

The next problem is that the first build will download a few Ubuntu
packages instructed by the apt‑get command. However, the next runs of
the build process will use the cached layers, including the one running the
apt commands:

Unless you change the RUN command, the layer containing the updated
packages will be reused.

Best practices for writing Dockerfiles from Docker say:

When processing a RUN apt-get -y update command, the files updated in the
container aren’t examined to determine if a cache hit exists. In that case, just
the command string itself is used to find a match.

This is acceptable if there are no other packages that need updating, but
otherwise you can end up with old and insecure packages.

Fortunately, the Docker build command includes the --no-cache flag to
discard the cache when building the image. This can increase the build time,
so it is a trade‑off that you need to consider when building the images.

A reasonable policy would be something like:

• Use cache on regular builds (if that happens a few times a day in CI
environment, for example) to speed up the build process.

• On a regular basis (daily, weekly, in the event of a major CVE), invalidate
the cache using the –pull and –no‑cache flags.

Image build caching can be powerful. It provides significant benefits in terms
of speed and efficiency when building container images, particularly in large‑
scale production environments. However, image build caching also introduces
potential risks.

One of the main risks is that outdated or vulnerable packages or dependencies
may be cached, which can lead to security vulnerabilities in the resulting
images. This is especially true in environments where images are built and
deployed quickly, with little time for thorough testing and security reviews.

Similarly, image build caching can lead to inconsistency in the resulting
images. If an image is built with cached layers that are not up to date, it may
not behave as expected, or may not be compatible with other components in
the system. This can lead to unexpected errors, downtime, or other issues.

U sing admission controllers
Kubernetes is designed to provide a secure and scalable environment for
deploying and managing containerized applications. One of its key features
is the ability to prevent unauthorized software from running within the
cluster. Kubernetes achieves this by using a combination of access control
policies, network isolation, and container runtime security features. These
measures help ensure the deployment of only approved software, reducing
the risk of malicious actors gaining access to your environment.

In addition, Kubernetes supports automation and cloud‑native patterns,
making it easier to manage and deploy applications at scale. This is in
contrast to traditional software orchestration methods, which typically
rely on manual configuration and maintenance. Kubernetes supports
automation through its declarative configuration model and API‑driven

Securing the Cloud: A Guide to Effective Vulnerability Management 27

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#leverage-build-cache

control plane, which enable you to define the desired state of your
environment and have Kubernetes automatically manage the deployment
and scaling of your applications to meet that state.

The automation capabilities of Kubernetes make it particularly well‑suited
for cloud‑native environments, where applications are designed to be
distributed, fault‑tolerant, and scalable. By taking advantage of Kubernetes’
features for preventing unauthorized software from running and automating
key processes, you can ensure that your applications run smoothly and
securely, while also reducing the amount of manual labor required to manage
your environment.

Even if you identify vulnerable images in your CI/CD pipelines, there is
often little stopping their deployment in production. Admission control is a
Kubernetes mechanism for preventing workloads from deploying to clusters
unless they comply with policy, and the policy can be related to the container
image’s vulnerability status. Ideally, you would like Kubernetes to check the
images before scheduling them, blocking the deployment of unscanned or
vulnerable images onto the cluster, especially a production cluster.

Kubernetes admission controllers are a powerful Kubernetes‑native
feature that help you define and customize what you allow to run on your
cluster. An admission controller intercepts and processes requests to the
Kubernetes API after authenticating and authorizing the request, but before
the persistence of the object.

Deployment
creation request

Persist to
Database

Kubernetes
API response

Kubernetes API

Image Scanner

Security Policies

Only if validated

Webhook Provider

Validation decision Validation decision

Image Definition

Kubernetes Admission Controller

Securing the Cloud: A Guide to Effective Vulnerability Management 28

https://sysdig.com/blog/kubernetes-admission-controllers/

Scanning tools usually offer a validating webhook that can trigger image

scanning on demand and then return a validation decision.

An admission controller can call this webhook before scheduling an image. The

security validation decision returned by the webhook will be propagated back

to the API server, which will reply to the original requester and only persist the

object in the etcd database if the image passed the checks.

However, the image scanner makes this decision without any context on what

is happening in the cluster. You could improve this solution by using OPA.

OPA is an open source and general-purpose policy engine that uses a

high‑level declarative language called Rego. One of the key ideas behind OPA

is to decouple decision‑making from policy enforcement.

With OPA, you can make the admission decision in the Kubernetes cluster

instead of the image scanner. This way, you can use cluster information in

decision‑making like namespaces, pod metadata, etc. An example would be

having one policy for the “dev” namespace with more permissive rules, and

then another very restrictive policy for “production.”

OP A
OPA allows teams to define and enforce policies across their cloud‑native
environments. With OPA, teams can create policies to detect and respond to
malicious or vulnerable images within their containerized applications. You can
customize these policies to fit the specific needs of a team and include rules
that identify specific vulnerabilities, block malicious images, or trigger alerts.

Here is an example of a policy using OPA that blocks images with
known vulnerabilities:

package main

import data.vulnerabilities

deny[msg] {

 input.image.vulnerabilities[_].id == vulnerabilities[_].id

 input.image.vulnerabilities[_].severity >=

vulnerabilities[_].severity

 msg := sprintf(“image contains high severity vulnerability %v

(%v)”, [vulnerabilities[_].id, vulnerabilities[_].severity])

}

In this example, the policy defines a deny rule that triggers when an image
contains a vulnerability with a severity level equal to or greater than a
pre‑defined threshold. The policy uses a data file called “vulnerabilities” that
contains a list of known vulnerabilities and their associated severity levels.

Teams can integrate this policy into their CI/CD pipeline to automatically block
the deployment of images with known vulnerabilities. This helps ensure the
use of only secure images in production environments.

Securing the Cloud: A Guide to Effective Vulnerability Management 29

https://www.openpolicyagent.org/
https://sysdig.com/blog/image-scanning-admission-controller/
https://sysdig.com/opensource/open-policy-agent/

 OPA gatekeeper
Tools like OPA and Falco can help teams respond to vulnerabilities and
malicious images. In the case of Kubernetes, OPA Gatekeeper is an additional
policy engine that can enforce policies on Kubernetes‑specific resources.

With Gatekeeper, teams can define policies that enforce specific
configurations, security requirements, or other constraints on Kubernetes
resources. Here’s an example policy for detecting vulnerable images
using Gatekeeper:

package k8srequiredlabels

import data.k8srequiredlabels

violation[{“msg”: msg}] {

 image := input.review.object.spec.template.spec.containers[_].

image

 vulnerabilities := data.vulnerabilities[image]

 vulnerabilities != null

 vulnerabilities[_].severity >= 7

 msg := sprintf(“Vulnerable image %s found in container %s”,

[image, }

This policy checks the severity level of vulnerabilities for a given container
image. If it is equal to or greater than 7 (on a scale of 0 to 10), it generates
a violation message indicating that a vulnerable image has been found
in a container. This policy assumes the availability of a data source called
“vulnerabilities” that maps image names to vulnerability information.

Constraints are defined using OPA Rego language and are customizable
to meet the specific needs of an organization or application. They can
enforce a wide range of policies, such as requiring all pods to run with
specific security settings or, in this case, disallowing the use of certain
container images.

Securing the Cloud: A Guide to Effective Vulnerability Management 30

https://github.com/open-policy-agent/gatekeeper

 Dedicated scanning tools
While image scanning is a common feature, it is typically considered part
of SCA, which is in turn part of AST. To address the unique challenges of
vulnerability management in cloud‑native architectures, it is important to
use tools and practices specifically designed for these environments. This
may include SCA tools that can scan container images for vulnerabilities, as
well as integration with orchestration platforms like Kubernetes to automate
vulnerability scanning and patching processes. By taking advantage of these
dedicated tools, you can more effectively manage vulnerabilities in your
cloud‑native environment and reduce the risk of security breaches.

As the demand for cloud‑compatible vulnerability management tools grows,
traditional vendors are expanding their offerings to include solutions that can
scan IaaS, containers, and other cloud‑native environments. However, these
tools may have limitations when it comes to cloud‑specific features, such as
scan speed and visibility into serverless functions. In other words, while it is
possible to adapt these tools for the cloud, they may not be optimized for the
cloud, and may not be as effective as purpose‑built cloud‑native vulnerability
management solutions.

Some of the open source tools available include:

• Trivy: A comprehensive and versatile security scanner.

• Clair: An app for parsing image contents and reporting vulnerabilities
affecting the contents.

Additionally, it is possible to license commercial options to perform
cloud‑native vulnerability management at scale. You can learn more about
Sysdig Secure here.

apiVersion: constraints.gatekeeper.sh/v1beta1

kind: K8sRequiredLabels

metadata:

 name: vulnerable-image

spec:

 match:

 kinds:

 - apiGroups: [“”]

 kinds: [“Deployment”]

 parameters:

 labels:

 requiredLabel: “true”

 enforcementAction: deny

 audit:

 namespaces:

 - default

 rego:

 content: |

 package k8srequiredlabels

 import data.vulnerabilities

 violation[{“msg”: msg}] {

 image :=

input.review.object.spec.template.spec.containers[_].image

 vulnerabilities := data.vulnerabilities[image]

 vulnerabilities != null

 vulnerabilities[_].severity >= 7

 msg := sprintf(“Vulnerable image %s found in container %s”,

[image, input.review.object.metadata.name])

 }

This constraint uses the policy defined earlier to deny deployments that
use vulnerable images. It matches on deployments, audits the “default”
namespace, and enforces the policy by denying noncompliant resources. With
this constraint in place, Gatekeeper will monitor new deployments and prevent
the use of vulnerable images at runtime.

Securing the Cloud: A Guide to Effective Vulnerability Management 31

https://github.com/aquasecurity/trivy
https://github.com/quay/clair
https://sysdig.com/solutions/vulnerability-management/

Conclusion
As cloud attacks continue to evolve, the need for effective vulnerability
management becomes increasingly important. The dynamic and distributed
nature of cloud‑native architectures requires a new approach to vulnerability
management that is tailored to the unique challenges of the cloud.

As a result, an effective vulnerability management strategy for cloud‑native
architectures requires a shift in mindset from traditional vulnerability
management practices. It involves runtime insights and an assessment
of the entire cloud environment, including containers, microservices, and
serverless functions. It also requires automation and collaboration between
DevSecOps teams.

By adopting a proactive approach to vulnerability management, organizations
can reduce the risk of cyberattacks, data breaches, and other security
incidents. We highlighted some real‑world breaches that could have been
avoided with the implementation of vulnerability scanning, thus guaranteeing
adherence to industry regulations and standards and fostering trust among
customers and stakeholders

Evolving vulnerability management for cloud‑native architectures is a critical
step toward ensuring the security and reliability of cloud‑based systems. As
the cloud continues to play an increasingly important role in modern business,
organizations must prioritize their vulnerability management strategies to stay
ahead of potential threats and protect their sensitive data and assets.

The “Sysdig 2024 Cloud Native Security and Usage Report” provides valuable
insights into the latest threats and trends in cloud‑native environments, and
can help you gain a deeper understanding of the evolving landscape and how
to take proactive steps to secure your environment. Don’t wait until it’s too late
– stay ahead of the game with Sysdig.

Securing the Cloud: A Guide to Effective Vulnerability Management 32

https://sysdig.com/content/c/pf-2024-report-cloud-native-security-and-usage?x=u_WFRi

E-BOOK

COPYRIGHT © 2023-2024 SYSDIG,INC.

ALL RIGHTS RESERVED.

EBK-007 REV. B 3/24

About Sysdig

In the cloud, every second counts. Attacks move at warp speed, and security teams must protect
the business without slowing it down. Sysdig stops cloud attacks in real time, instantly detecting
changes in risk with runtime insights and open source Falco. Sysdig correlates signals across
cloud workloads, identities, and services to uncover hidden attack paths and prioritize real risk.
From prevention to defense, Sysdig helps enterprises focus on what matters: innovation.

Sysdig. Secure Every Second.

See how Sysdig
helps you secure
every second.

R E Q U E S T A D E M O

Take the next step.

https://sysdig.com/request-a-demo/

	_1pa0nfvsu4k1
	_9hdd64vn01vf
	_57irnloevvq4
	_bwnxqwx7nowb
	_5xb32oqodi9d
	_lc9stm6196io
	_xav9gtpsugln
	_sijprd2izkf2
	_auz14uws6tie
	_tgoj1bg8iwdk
	_1dpifgyzpzgm
	_9370k3kpf41j
	_p2cdhpaf7hql
	_1ogio0ob7377
	_dgwk01ukqobt
	_j3fj653v55jo
	_5n4c7vfqkf3p
	_fur5zctu1i7v
	_pbz1wyjjfhos
	_iw2m51w4a3hs
	_bx7baclrrw6k
	_toto2wr94puz
	_g50k1g70ogei
	_2ybogdhq3vq
	_hz8xj8nftpyg
	_tvp2aetwt0sv
	_e412ktvejx3u
	_6ldne1jr6tl4
	_sskaooiql6ri
	_fjrtm86xuvu1
	_fkrga24ecm1d
	_xq7zvcwjjdd
	_g4xxntt6d5ep
	_enjm6j2nujc6
	_uu91age9rokw
	_z1rjbn9oj3un
	_lhyvxzvlr1im
	_gthar76v77cm
	_gor2v9yk53ue
	_w70bem7b917q
	_gz9yo3rz6584
	_wfiaqqwei1az
	_t2u30c3tt5pd
	_y7mvfa7ou50k
	_sjnksu6inycp
	_fk25s0hjr1pn
	Vulnerability Management Then and Now
	The framework
	Vulnerability management for software that you build
	Prioritization of vulnerability assessment findings
	Remediation
	Mitigation
	Validation
	Risk acceptance
	Reporting
	The nuances of cloud‑native architectures
	Vulnerability management deployment methods
	Integrating into the development life cycle

	Conclusion

