
E-BOOK

OWASP Top 10
for Kubernetes
In-depth analysis and mitigation steps

Table of Contents

Introduction

OWASP Top 10 for Kubernetes Risk Assessment

05 What is OWASP Kubernetes?

06 Insecure workload configurations

09 Misconfigured cluster components

12 Overly permissive RBAC configurations

17 Missing network segmentation controls

20 Inadequate logging and monitoring

22 Lack of centralized policy enforcement

25 Secrets management failures

28 Supply chain vulnerabilities

32 Broken authentication mechanisms

34 Outdated and vulnerable Kubernetes components

Conclusion

Introduction
Cloud attacks are happening faster than ever before; bad actors need only 10 minutes or less to execute an attack. With
the increasing adoption of Kubernetes to provide the infrastructure that powers modern cloud-native applications, it’s
important to ensure that these environments are secure and resilient against potential cyberthreats. The Open Web
Application Security Project (OWASP) Top 10 for Kubernetes is a set of security risks specific to Kubernetes environments
that organizations should address in order to ensure the security of cloud-native applications.

As Kubernetes acts as the brain (or orchestrator) for distributed container deployment, it manages service-oriented
applications using containers distributed across clusters of hosts. Kubernetes provides mechanisms for application
deployment, service discovery, scheduling, updating, maintenance, and scaling. However, these new layers of
infrastructure complexity also add complexities for day-to-day tasks such as managing application performance, gaining
visibility into services, and monitoring and troubleshooting workflows.

In addition to increased infrastructure complexity, many applications are now being rearchitected using microservices.
Multiple components that provide singular functionality communicate with each other, and it is possible to distribute each
service across several instances. This distribution and high workload volume of microservices make it more challenging to
monitor Kubernetes environments effectively.

This e-book on OWASP Top 10 for Kubernetes provides valuable information and best practices beyond the original
OWASP guidance, and that applies broadly to most Kubernetes environments. It covers the Kubernetes security basics of
golden signal collection, observability, security monitoring, authentication, authorization, and vulnerability management.
The e-book calls out relevant incidents that highlight the dangers of each risk and provides technical guidance on how
to achieve basic mitigation. Additionally, it provides useful alerts that can notify you when something is not quite right.
By addressing the OWASP Top 10 for Kubernetes security risks, organizations can ensure that their containerized
environments are secure and resilient against potential cyberthreats.

03OWASP Top 10 for Kubernetes | Introduction

https://owasp.org/
https://sysdig.com/blog/golden-signals-kubernetes/

OWASP Top 10 for Kubernetes
Risk Assessment
One of the biggest concerns when using Kubernetes is whether you are
complying with security requirements or guaranteeing an adequate security
posture that takes into account all possible threats. For this reason, OWASP
members created the OWASP Top 10 for Kubernetes, which helps identify the
most likely risks.

OWASP Top 10 projects are useful awareness and guidance resources designed
for security practitioners and engineers. They can also map to other security
frameworks that help incident response engineers understand Kubernetes
threats. MITRE ATT&CK techniques are also commonly used to register the
attacker’s techniques and help blue teams understand the best ways to protect
an environment. In addition, you can check the Kubernetes threat model to
understand all of the attack surfaces and main attack vectors.

The OWASP Kubernetes Top 10 puts all possible risks in an order of overall
commonality or probability. In this e-book, we modified the order slightly, grouping
some of the risks in the same category, such as misconfigurations, monitoring,
or vulnerabilities. We also recommend some tools or techniques to audit your
configuration and make sure that your security posture is the most appropriate.

04OWASP Top 10 for Kubernetes | OWASP Top 10 for Kubernetes Risk Assessment

680 px

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E K01
Insecure Workloads Configurations
K02
Supply Chain Vulnerabilities
K03
Overly Permissive RBAC
K04
Policy Enforcement
K05
Inadequate Logging
K06
Broken Authentication
K07
Network Segmentation
K08
Secret Management
K09
Misconfigured Cluster Components
K10
Vulnerable K8s Components

1

2

3

4

5

6

7

8

9

10

8 9 10

3 4 5

6 9 10

10

107

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

9 10

10

5

PODPOD

App1 5

7

2

2

1

App2 521

10

1052

What is OWASP Kubernetes?
OWASP is a nonprofit foundation that works to improve software security.
Initially, OWASP focused on web application security (hence its name), but its
scope has broadened over time because of the nature of modern systems design.

As applications development moves from monolithic architectures running
traditionally on virtual machines hidden behind firewalls to modern-day
microservice workloads running on cloud infrastructures, it’s important to
update the security requirements for each application environment. That’s why
the OWASP Foundation created the OWASP Top 10 for Kubernetes – a list of
the 10 most common attack vectors specifically for the Kubernetes environment

The visual below spotlights which component or part is impacted by each of the
risks that appear in OWASP Kubernetes mapped to a generalized Kubernetes
threat model. This analysis also dives into each OWASP risk, providing technical
details on why the threat is prominent, as well as common mitigations. It’s helpful to
group the risks into three categories and order of likelihood. The risk categories are:

Misconfigurations
• K01:2022 Insecure Workload Configurations

• K09:2022 Misconfigured Cluster Components

• K03:2022 Overly Permissive RBAC Configurations

• K07:2022 Missing Network Segmentation Controls

Lack of visibility
• K05:2022 Inadequate Logging and Monitoring

• K04:2022 Lack of Centralized Policy Enforcement

• K08:2022 Secrets Management Failures

Vulnerability management
• K02:2022 Supply Chain Vulnerabilities

• K06:2022 Broken Authentication Mechanisms

• K10:2022 Outdated and Vulnerable Kubernetes Components

05OWASP Top 10 for Kubernetes | What is OWASP Kubernetes?

https://owasp.org/www-project-kubernetes-top-ten/

K01:2022

Insecure workload configurations
Security is at the forefront of all cloud provider offerings. Cloud service providers
such as Amazon Web Services (AWS), Google Cloud Platform, and Microsoft
Azure implement an array of sandboxing features, virtual firewall features, and
automatic updates to underlying services in order to ensure that your business
stays secure whenever and wherever possible. These measures also alleviate
some of the traditional security burdens of on-premises environments. However,
cloud environments apply what is known as a shared security model, which means
that part of the responsibility is on the cloud service consumer to implement these
security guardrails in their response environment. Responsibilities also vary based
on the cloud consumption model and type of offering.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1 1

App2 1

K01
Insecure Workloads
Configurations

• App processes should
not run as root

• Read-only filesystems
should be used

• Privileged containers
should be disallowed

1

The administrators of a tenant have to ultimately ensure that workloads are
using safe images, run on a patched/updated operating system (OS), and
ensure the continuous auditing and remediation of infrastructure configurations.
Misconfigurations in cloud-native workloads are one of the most common
approaches for adversaries to gain access to your environment.

06OWASP Top 10 for Kubernetes | Insecure workload configurations

Operating system
The nice thing about containerized workloads is that the images you choose
often come pre-loaded with the dependencies necessary to function with your
applications’ base image, which is built for a particular OS.

These images pre-package some general system libraries and other third-party
components that are not exactly required for the workload. And in some cases,
such as within a microservices architecture (MSA), a given container image may
be too bloated to facilitate a performant container that operates the microservice.

We recommend running minimal, streamlined images in your containerized
workloads, such as Alpine Linux images, which are much smaller in file size.
These lightweight images are ideal in most cases. Since there are fewer
components packaged into it, there are also fewer possibilities for compromise. If
you need additional packages or libraries, consider starting with the base Alpine
image, and gradually adding packages/libraries where needed to maintain the
expected behavior/performance.

Audit workloads
Consider using the Center for Internet Security (CIS) Benchmark for Kubernetes as
a starting point for discovering misconfigurations. The open source project kube-
bench, for instance, can check your cluster against the CIS Kubernetes benchmark
using YAML files to set up the tests.

Example CIS benchmark control
Minimize the admission of root containers (5.2.6)

Linux container workloads can run as any Linux user. However, containers that run
as the root user increase the possibility of container escape (privilege escalation
and then lateral movement in the Linux host). The CIS benchmark recommends
running all containers as a defined non-UID 0 user.

One example of a Kubernetes auditing tool that can help minimize the admission
of root containers is kube-admission-webhook. This is a Kubernetes admission
controller webhook that allows you to validate and mutate incoming Kubernetes
API requests. You can use it to enforce security policies, such as prohibiting the
creation of root containers in your cluster.

07OWASP Top 10 for Kubernetes | Insecure workload configurations

https://www.cisecurity.org/benchmark/kubernetes
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
https://www.tenable.com/audits/items/CIS_Kubernetes_v1.5.1_Level_2.audit:56ab8206352e3d9e3b26df21356eb985

This is an example of a privileged pod in Kubernetes. Running a pod in privileged
mode means that the pod can access the host’s resources and kernel capabilities.
To prevent privileged pods, the .rego file from the OPA Gatekeeper admission
controller should look something like this:

package kubernetes.admission

deny[msg] {

 c := input_containers[_]

 c.securityContext.privileged

 msg := sprintf(“Privileged container is not allowed: %v,

securityContext: %v”,

[c.name, c.securityContext])

}

In this case, the output should look something like this:

Error from server (Privileged container is not allowed: alpine,

securityContext: {“privileged”: true}): error when creating “STDIN”:

admission webhook “validating-webhook.openpolicyagent.org”

How to prevent workload
misconfigurations with OPA
You can use tools such as Open Policy Agent (OPA) as a policy engine to detect
these common misconfigurations. The OPA admission controller gives you high-
level declarative language to author and enforce policies across your stack.

Let’s say that you want to build an admission controller for the previously
mentioned alpine image. However, one of the users of Kubernetes wants to set the
securityContext to privileged=true.

- rule: DB program spawned process

 desc: >

 a database-server related program spawned a new process other

than itself.

 This shouldn\’t occur and is a follow on from some SQL

injection attacks.

 condition: >

 proc.pname in (db_server_binaries)

 and spawned_process

 and not proc.name in (db_server_binaries)

 and not postgres_running_wal_e

 and not user_known_db_spawned_processes

 output: >

 Database-related program spawned process other than itself

(user=%user.name user_loginuid=%user.loginuid

 program=%proc.cmdline pid=%proc.pid parent=%proc.pname

container_id=%container.id image=%container.image.repository)

 priority: NOTICE

 tags: [host, container, process, database, mitre_execution, T1190]

08OWASP Top 10 for Kubernetes | Insecure workload configurations

https://sysdig.com/opensource/open-policy-agent/

K09:2022

Misconfigured cluster
components
Misconfigurations in core Kubernetes components are much more common
than expected. Continuous and automatic auditing of infrastructure-as-
code (IaC) and Kubernetes (YAML) manifests instead of checking them
manually will reduce configuration errors.

One of the riskiest misconfigurations is the Anonymous Authentication
setting in Kubelet, which allows nonauthenticated requests to the Kubelet.
We strongly recommend checking your Kubelet configuration and ensuring
that the flag described below is set to false.

When auditing workloads, it’s important to keep in mind that there are
different ways in which to deploy an application. With the configuration
file of the various cluster components, you can authorize specific read/
write permissions on those components. In the case of Kubelet, by default,
all requests to the Kubelet’s HTTPS endpoint that are not rejected by
other configured authentication methods are treated as anonymous
requests, and given a username of system:anonymous and a group
of system:unauthenticated.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

9

9

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

9

PODPOD

App1

App2

K09
Misconfigured Cluster
Components

• kubelet

• etcd

• kube-apiserver

1

09OWASP Top 10 for Kubernetes | Misconfigured cluster components

To disable the anonymous access for these unauthenticated requests, simply
start Kubelet with the feature flag --anonymous-auth=false. When auditing
cluster components like Kubelet, you can see that Kubelet authorizes API
requests using the same request attributes approach as the API server. As a
result, you can define the permissions such as:

• POST

• GET

• PUT

• PATCH

• DELETE

However, there are many other cluster components to focus on, not just Kubelet.
For instance, kubectl plug-ins run with the same privileges as the kubectl command
itself, so if a plug-in is compromised, it could potentially be used to escalate
privileges and gain access to sensitive resources in your cluster.

Based on the CIS benchmark report for Kubernetes, we would recommend
enabling the following settings for all cluster components.

etcd
The etcd database offers a highly available key/value store that Kubernetes
uses to centrally house all cluster data. It is important to keep etcd safe, as it
stores config data as well as Kubernetes Secrets. We strongly recommend
regularly backing up etcd data to avoid data loss.

Thankfully, etcd supports a built-in snapshot feature. The snapshot can
be taken from an active cluster member with the etcdctl snapshot save
command. Taking the snapshot will have no performance impact. Here is an
example of taking a snapshot of the keyspace served by $ENDPOINT to the
file snapshotdb:

ETCDCTL_API=3 etcdctl --endpoints $ENDPOINT snapshot

save snapshotdb

kube-apiserver
The Kubernetes API server validates and configures data for API objects,
which include pods, services, ReplicationControllers, and others. The API
server services representational state transfer (REST) operations and provides
the front end to the cluster’s shared state through which all other components
interact. It’s critical to cluster operation and has high value, as an attack target
it can’t be understated. From a security standpoint, all connections to the API
server, communication made inside the control plane, and communication
between the control plane and kubelet components should only be provisioned
to be reachable using Transport Layer Security (TLS) connections.

By default, TLS is unconfigured for the kube-apiserver. If this is flagged within
the kube-bench results, simply enable TLS with the feature flags --tls-cert-
file=[file] and --tls-private-key-file=[file] in the kube-apiserver. Since
Kubernetes clusters tend to scale up and scale down regularly, we recommend
using the TLS bootstrapping feature of Kubernetes. This allows automatic
certificate signing and TLS configuration inside a Kubernetes cluster, rather
than following the above manual workflow.

It is also important to regularly rotate these certificates, especially for
long-lived Kubernetes clusters. Fortunately, there is automation to help
rotate these certificates in Kubernetes v.1.8 or higher versions. You should
also authenticate API server requests, which we cover later in the Broken
Authentication Mechanisms section.

10OWASP Top 10 for Kubernetes | Misconfigured cluster components

https://kubernetes.io/docs/concepts/overview/components/
https://sysdig.com/blog/top-15-kubectl-plugins-for-security-engineers/
https://sysdig.com/blog/monitor-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
https://sysdig.com/learn-cloud-native/kubernetes-101/kubernetes-api-overview/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-tls-bootstrapping/
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-tls-bootstrapping/#certificate-rotation
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-tls-bootstrapping/#certificate-rotation

CoreDNS
CoreDNS is a DNS server technology that can serve as the Kubernetes
cluster DNS and is hosted by the Cloud Native Computing Foundation
(CNCF). CoreDNS superseded kube-dns since version v.1.11 of Kubernetes.
Name resolution within a cluster is critical for locating the orchestrated and
ephemeral workloads and services inherent in Kubernetes.

CoreDNS addressed a bunch of security vulnerabilities found in kube-dns,
specifically in dnsmasq (the DNS resolver). This DNS resolver was responsible
for caching responses from SkyDNS, the component responsible for
performing the eventual DNS resolution services.

Aside from addressing security vulnerabilities in kube-dns’s dnsmasq feature,
CoreDNS addresses performance issues in SkyDNS. When using kube-dns,
it also involves a sidecar proxy to monitor health and handle the metrics
reporting for the DNS service.

CoreDNS addresses a lot of these security- and performance-related issues by
providing all of the functions of kube-dns within a single container. However,
it can still be compromised. As a result, it’s important to again use kube-bench
for compliance checks on CoreDNS.

11OWASP Top 10 for Kubernetes | Misconfigured cluster components

https://coredns.io/
https://www.cncf.io/projects/coredns/
https://www.cncf.io/projects/coredns/

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

3

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1

App2

K03
Overly Permissive RBAC

1

K03:2022

Overly permissive RBAC
configurations
Role-based access control (RBAC) is a method of regulating access to
computer or network resources based on the roles of individual users within
your organization. A RBAC misconfiguration could allow an attacker to elevate
privileges and gain full control of the entire cluster.

Creating RBAC rules is rather straightforward. For instance, to create a
permissive policy to allow read-only create, read, update, delete (CRUD)
actions (i.e., get, watch, list) for pods in the Kubernetes cluster’s default
network namespace, but to prevent create, update, or delete actions against
those pods, the policy would look something like this:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

Metadata:

 namespace: default

 name: pod-reader

Rules:

- apiGroups: [“”] # “” indicates the core API group

 resources: [“pods”]

 verbs: [“get”, “watch”, “list”]

12OWASP Top 10 for Kubernetes | Overly permissive RBAC configurations

https://sysdig.com/learn-cloud-native/kubernetes-security/kubernetes-rbac/

Issues arise when managing these RBAC rules in the long run. Admins will
likely need to manage ClusterRole resources to avoid building individual roles
on each network namespace, as seen above. ClusterRoles allow you to build
cluster-scoped rules for granting access to those workloads.

You can then use RoleBindings to bind the above-mentioned roles to users.

Similar to other identity and access management (IAM) practices, you will
need to ensure that each user has the correct access to resources within
Kubernetes without granting excessive permissions to individual resources.
The manifest below shows how we recommend binding a role to a service
account or user in Kubernetes:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

Metadata:

 name: read-pods

 namespace: default

Subjects:

- kind: User

 name: nigeldouglas

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: pod-reader

 apiGroup: rbac.authorization.k8s.io

By scanning for RBAC misconfigurations, you can proactively bolster the
security posture of your cluster and simultaneously streamline the process
of granting permissions. One of the major reasons cloud-native teams grant
excessive permissions is because of the complexity of managing individual
RBAC policies in production. In other words, there may be too many users and
roles within a cluster to manage by manually reviewing manifest code. That’s
why there are tools specifically built to handle the management, auditing, and
compliance checks of your RBAC.

13OWASP Top 10 for Kubernetes | Overly permissive RBAC configurations

RBAC Audit
RBAC Audit is a tool created by the team at CyberArk. This tool is designed to
scan the Kubernetes cluster for risky roles within RBAC and requires Python
3.0. This python tool can be run via a single command:

ExtensiveRoleCheck.py --clusterRole clusterroles.

json --role Roles.json --rolebindings rolebindings.json

--cluseterolebindings clusterrolebindings.json

The output should look somewhat similar to:

[*] Started enumerating risky ClusterRoles:

[!][ClusterRole]-> Cluster-pod-creator Has permission to create pods!

[!][ClusterRole]-> Cluster-Secret-reder Has permission to

list secrets!

[!][ClusterRole]-> resource-reader Has permission to use get on

any resource!

[!][ClusterRole]-> nginx-1b-nginx-ingress Has permission to

list secrets!

[!][ClusterRole]-> prometheus-adapter-server-resources Has

Admin-Cluster permission!

[!][ClusterRole]-> prometheus-kube-state-metrics Has permission to

list secrets!

[!][ClusterRole]-> prometheus -prometheus-oper-operator Has

permission to access statefulsets with any verb!

[!][ClusterRole]-> prometheus -prometheus-oper-operator Has

permission to list secrets!

[!][ClusterRole]-> prometheus-prometheus-oper-operator Has permission

to access secrets with any verb!

[*] Started enumerating risky Roles:

[!][Role]-> nginx-1b-nginx-ingress Has permission to list secrets!

[!][Role]-> kubesystem-pod-creator Has permission to create pods!

[!][Role]-> default-admin Has Admin-Cluster permission!

[!][Role]-> res-reader Has permission to use get on any resource!

[!][Role]-> Random-user Has permission to use get on any resource!

[!][Role]-> local-secret-reader Has permission to list secrets!

[*] Started enumerating risky ClusterRoleBinding:

[!][ClusterRoleBinding]-> nginx-1b-nginx-ingress is binded to

nginx-lb-nginx-ingress ServiceAccount.

[!][ClusterRoleBinding]-> sal-resources is binded to

sal ServiceAccount.

[!][ClusterRoleBinding]-> secret-reader is binded to

sa-secret-reader ServiceAccount.

[!][ClusterRoleBinding]-> sa-pod-creator is binded to

sa-pod-creator ServiceAccount.

[!][ClusterRoleBinding]-> prometheus-adapter-hpa-controller is

binded to prometheus-adapter ServiceAccount.

[!][ClusterRoleBinding]-> prometheus-kube-state-metrics is binded

to prometheus-kube-state-metrics ServiceAccount.

[!][ClusterRoleBinding]-> prometheus-prometheus-oper-operator is

binded to prometheus-prometheus-oper-operator ServiceAccount.

[*] Started enumerating risky RoleRoleBindings:

[!][RoleBinding]-> nginx-1b-nginx-ingress is binded to

nginx-1b-nginx-ingress ServiceAccount.

[!J[RoleBinding]-> local-secret is binded to

kubesystem-secret-reader ServiceAccount.

[*] Started enumerating risky Roles:

[*] [Role] -> default-admin Has Admin-Cluster permissions!

[*] Started enumerating risky ClusterRoles:

[!] [ClusterRole]-> Cluster-Secret-reader Has permission to

list secrets!

[*] Started enumerating risky ClusterRoleBindings:

[!] [ClusterRoleBinding]-> secret-reader Is Binded to

sa-secret-reader ServiceAccount

[*] Started enumerating risky RoleBindings:

[!] [RoleBinding]-> nginx-1b-nginx-ingress Is binded to

nginx-lb-nginx-ingess ServiceAccount

14OWASP Top 10 for Kubernetes | Overly permissive RBAC configurations

https://github.com/cyberark/kubernetes-rbac-audit

Kubiscan
Kubiscan is another tool built by the team at CyberArk. Unlike RBAC Audit, this
tool is designed for scanning Kubernetes clusters for risky permissions in the
Kubernetes RBAC authorization model – not the RBAC roles. Again, Python
3.6 or higher is required for this tool to work.

Since Kubiscan is a Python tool, all commands start with ‘python3’ when
run locally.

To see all the examples, run python3 KubiScan.py -e or, within the container,
run kubiscan -e.

This table lists available Kubiscan commands.

Get all risky ClusterRoles

python3 KubiScan.py --risky-clusterroles

Get all risky Roles

python3 KubiScan.py --risky-roles

Get all risky Roles and ClusterRoles

python3 KubiScan.py --risky-any-roles

Get all risky RoleBindings

python3 KubiScan.py --risky-rolebindings

Get all risky ClusterRoleBindings

python3 KubiScan.py --risky-clusterrolebindings

Get all risky RoleBindings and ClusterRoleBindings

python3 KubiScan.py --risky-any-rolebindings

Get all risky Subjects (Users, Groups or Service Accounts)

python3 KubiScan.py --risky-subjects

Get all risky Pods1Containers

python3 KubiScan.py --risky-pods

+----------+-----------------+-------------+-------------------------------------+

| Priority | Kind | Namespace | Name |

+----------+-----------------+-------------+-------------------------------------+

| CRITICAL | Group | None | system:masters |

| CRITICAL | ServiceAccount | default | kubisa |

| CRITICAL | ServiceAccount | kube-system | default |

| CRITICAL | ServiceAccount | default | sa4 |

| CRITICAL | ServiceAccount | default | risky-sa |

| CRITICAL | ServiceAccount | default | root-sa2 |

| CRITICAL | ServiceAccount | Kube-system | clusterrole-aggregation-controller |

| HIGH | ServiceAccount | kube-system | daemon-set-controller |

| HIGH | ServiceAccount | kube-system | deployment -controller |

| CRITICAL | ServiceAccount | kube-system | generic-garbage-collector |

| CRITICAL | ServiceAccount | kube-system | horizontal -pod-autoscaler |

| HIGH | ServiceAccount | kube-system | job-controller |

| CRITICAL | ServiceAccount | kube-system | namespace-controller |

| CRITICAL | ServiceAccount | kube-system | persistent-volume-binder |

| HIGH | ServiceAccount | kube-system | replicaset-controller |

| HIGH | ServiceAccount | kube-system | replication-controller |

| CRITICAL | ServiceAccount | Kube-system | resourcequota-controller |

| HIGH | ServiceAccount | kube-system | statefulset-controller |

| CRITICAL | User | None | system:kube-controller -manager |

| CRITICAL | ServiceAccount | default | root-sa |

| CRITICAL | ServiceAccount | kube-system | bootstrap-signer |

| CRITICAL | ServiceAccount | kube-system | token-cleaner |

+----------+-----------------+-------------+-------------------------------------+

Kubiscan
Risky Users List

15OWASP Top 10 for Kubernetes | Overly permissive RBAC configurations

https://github.com/cyberark/KubiScan

Krane
Krane is a static analysis tool for Kubernetes RBAC. Similar to Kubiscan,
it identifies potential security risks in Kubernetes RBAC design and makes
suggestions on how to mitigate them. The major difference between these
tools is the way Krane provides a dashboard of the cluster’s current RBAC
security posture and lets you navigate through its definition.

If you’d like to run an RBAC report against a running cluster, you must provide
a kubectl context, as shown below:

krane report -k <kubectl-context>

If you’d like to view your RBAC design in the tree design above, with a network
topology graph and the latest report findings, you need to start dashboard
server via this command:

krane dashboard -c nigel-eks-cluster

The -c feature flag points to a cluster name in your environment. If you
would like a dashboard of all clusters, simply drop the -c reference from the
above command.

16OWASP Top 10 for Kubernetes | Overly permissive RBAC configurations

https://github.com/appvia/krane

K07:2022

Missing network
segmentation controls
Kubernetes, by default, defines what is known as a “flat network” design.

This allows workloads to freely communicate between each other without any
prior configuration. However, they can do this without any restrictions. If an
attacker were able to exploit a running workload, they would essentially have
access to perform data exfiltration against all other pods in the cluster. Cluster
operators that are focused on a zero trust architecture in their organization
will want to take a closer look at Kubernetes network policy to ensure properly
restricted services.

Kubernetes offers solutions to address the right configuration of network
segmentation controls. Here, we show you two of them.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

7

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1

7

App2

K07
Network
Segmentation

• Native Controls
(Multi-Cluster)

• Native Controls
(NetworkPolicies)

• Service Mesh

• CNI Plugins

1

17OWASP Top 10 for Kubernetes | Missing network segmentation controls

https://www.enterprisenetworkingplanet.com/management/the-risks-and-rewards-of-flat-networks/

Service mesh with Istio
Istio provides a service mesh solution that allows security and network teams
to manage traffic flow across microservices, enforce policies, and aggregate
telemetry data in order to enforce microsegmentation on network traffic going
in and out of your microservices.

At the time of this writing, the service relies on implementing a set of sidecar
proxies to each microservice in your cluster. However, the Istio project is
looking to move to a sidecar-less approach sometime in the year.

The sidecar technology is called Envoy, which handles ingress/egress traffic
between services in the cluster and from a service to external services in the
service mesh architecture. The clear advantage of using proxies is that they
provide a secure microservice mesh, offering functions like traffic mirroring,
discovery, rich Layer-7 (L7) traffic routing, circuit breakers, policy enforcement,
telemetry recording/reporting functions, and – most importantly – automatic
mutual TLS (mTLS) for all communication with automatic certificate rotation.

apiVersion: security.istio.io/v1beta1

kind: AuthorizationPolicy

Metadata:

 name: httpbin

 namespace: default

Spec:

 action: DENY

 Rules:

 - from:

 - source:

 namespaces: [“prod”]

 To:

 - operation:

 methods: [“POST”]

The below Istio AuthorizationPolicy sets action to DENY on all requests from
the prod production namespace to the POST method on all workloads in the
default namespace.

This policy is incredibly useful. Unlike Calico network policies that can only
drop the traffic based on the IP address and port at the L3/L4 (the network
layer), the authorization policy is denying the traffic based on HTTP/S verbs
such as POST/GET at L7 (the application layer). This is important when
implementing a web application firewall (WAF).

Discover how Istio monitoring can help you guarantee that your Istio services
are in a good shape.

18OWASP Top 10 for Kubernetes | Missing network segmentation controls

https://github.com/istio/istio
https://istio.io/latest/blog/2022/introducing-ambient-mesh/
https://sysdig.com/blog/monitor-istio/

CNI
It’s worth noting that although there are huge advantages to a service mesh,
such as encryption of traffic between workloads via mTLS as well as HTTP/S
traffic controls, there are also some complexities to managing a service mesh.
The use of sidecars beside each workload adds additional overhead in your
cluster, as well as unwanted issues troubleshooting those sidecars when they
experience issues in production.

Many organizations opt to only implement the Container Network Interface
(CNI) by default. The CNI, as the name suggests, is the networking interface
for the cluster. CNIs like Project Calico and Cilium come with their own policy
enforcement. While Istio enforces traffic controls on L7 traffic, the CNI tends
to be focused more on network-layer traffic (L3/L4).

The following CiliumNetworkPolicy, as an example, limits all endpoints with
the label app=frontend to only be able to emit packets using Transmission
Control Protocol (TCP) on port 80, to any L3 destination:

apiVersion: “cilium.io/v2”

kind: CiliumNetworkPolicy

Metadata:

 name: “l4-rule”

Spec:

 endpointSelector:

 matchLabels:

 app: frontend

 Egress:

 - toPorts:

 - ports:

 - port: “80”

 protocol: TCP

We mentioned using the Istio AuthorizationPolicy to provide WAF-like
capabilities at the L7/application layer. However, a distributed denial-of-
service (DDoS) attack can still happen at the network layer if the adversary
floods the pods/endpoint with excessive TCP/User Datagram Protocol (UDP)
traffic. Similarly, it can prevent compromised workloads from speaking to
known/malicious command and control (C2) servers based on fixed IPs and
ports.

Do you want to dig deeper? Learn more about how to prevent a DDoS attack
in Kubernetes with Calico and Falco.

19OWASP Top 10 for Kubernetes | Missing network segmentation controls

https://github.com/projectcalico
https://github.com/cilium
https://sysdig.com/learn-cloud-native/cloud-security/what-is-a-dos-attack/
https://sysdig.com/learn-cloud-native/cloud-security/what-is-a-dos-attack/
https://sysdig.com/blog/denial-of-service-kubernetes-calico-falco/
https://sysdig.com/blog/denial-of-service-kubernetes-calico-falco/

K05:2022

Inadequate logging
and monitoring
Kubernetes provides an audit logging feature by default. Audit logging shows
a variety of security-related events in chronological order. These activities can
be generated by users, by applications that use the Kubernetes API, or by the
control plane itself.

However, there are other log sources to focus on – not limited to Kubernetes
audit logs. They can include host-specific OS logs, network activity logs (such
as DNS, for which you can monitor the Kubernetes add-ons CoreDNS), and
cloud providers that also work as the foundation for the Kubernetes cloud.

Without a centralized tool for storing all of these sporadic log sources, you
would have a hard time using them in the case of a breach. That’s where
tools like Prometheus, Grafana, and Falco are useful.

Prometheus
Prometheus is an open source, community-driven project for monitoring
modern cloud-native applications and Kubernetes. It is a graduated member
of the CNCF and has an active developer and user community.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

5

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

5

PODPOD

App1 5

App2 5

5

K05
Inadequate Logging

• Kubernetes Events

• Application & Container
Logs

• Operating System Logs

• Cloud Provider Logs

• Network Logs

1

20OWASP Top 10 for Kubernetes | Inadequate logging and monitoring

https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/
https://sysdig.com/blog/how-to-monitor-coredns/
https://github.com/prometheus/prometheus

Grafana
Like Prometheus, Grafana is an open source tool with a large community
backing. Grafana allows you to query, visualize, alert on, and understand your
metrics no matter where they are stored. Users can create, explore, and share
dashboards with their teams.

Falco (runtime detection)
Falco, a recent graduate project of the Cloud Native Compute Foundation
(CNCF) is the de facto standard for Kubernetes threat detection. Falco
detects threats at runtime by observing the behavior of your applications
and containers. Falco extends threat detection across cloud environments
with Falco Plugins.

F A L C OF A L C O

System Calls

Kubernetes Events

Cloud Activity

Falco was the first runtime security project to join the CNCF as an incubation-
level project. Falco acts as a security camera, detecting unexpected behavior,
intrusions, and data theft in real time in all Kubernetes environments. Falco
v.0.13 added Kubernetes Audit Events to the list of supported event sources.
This is in addition to the existing support for system call events. Kubernetes
v1.11 introduced an improved implementation of audit events and provides a
log of requests and responses to kube-apiserver.

Because almost all of the cluster management tasks are performed through
the API server, the audit log can effectively track the changes made to
your cluster.

Examples of this include:

• Creating and destroying pods, services, deployments, DaemonSets, etc.

• Creating, updating, and removing ConfigMaps or secrets.

• Subscribing to the changes introduced to any endpoint.

21OWASP Top 10 for Kubernetes | Inadequate logging and monitoring

https://github.com/grafana/grafana
https://sysdig.com/blog/falco-cncf-graduation/
https://falco.org/docs/event-sources/kubernetes-audit/

K04:2022

Lack of centralized policy
enforcement
Enforcing security policies becomes a difficult task when you need to enforce
rules across multicluster and multicloud environments. By default, security
teams need to manage risk across each of these heterogeneous environments
separately.

There’s no default way to detect, remediate, and prevent misconfigurations
from a centralized location, meaning that clusters could potentially be left
open to compromise.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

4

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1

App2

K04
Policy Enforcement

1

22OWASP Top 10 for Kubernetes | Lack of centralized policy enforcement

https://sysdig.com/learn-cloud-native/cloud-security/multi-cloud-security/

Admission controller
An admission controller intercepts requests to the Kubernetes API server prior
to persistence. The request must first be authenticated and authorized, and
then the controller decides whether to allow the request to be performed. For
example, you can create this admission controller configuration:

apiVersion: apiserver.config.k8s.io/v1

kind: AdmissionConfiguration

plugins:

 - name: ImagePolicyWebhook

 configuration:

 imagePolicy:

 kubeConfigFile: <path-to-kubeconfig-file>

 allowTTL: 50

 denyTTL: 50

 retryBackoff: 500

 defaultAllow: true

The ImagePolicyWebhook configuration is referencing a kubeconfig formatted
file that sets up the connection to the back end. The point of this admission
controller is to ensure that the back end communicates over TLS.

The allowTTL: 50 sets the amount of time in seconds to cache the approval;
similarly, the denyTTL: 50 sets the amount of time in seconds to cache the
denial. Admission controllers can be used to limit requests to create, delete,
modify objects, or connect to proxies.

Unfortunately, the AdmissionConfiguration resource still needs individual
managing on each cluster. If you forget to apply this file on one of your
clusters, it will lose this policy condition. Thankfully, projects like OPA’s
Kube-Mgmt tool help manage the policies and data of OPA instances within
Kubernetes instead of managing admission controllers individually.

The kube-mgmt tool automatically discovers policies and JSON data stored
in ConfigMaps in Kubernetes and loads them into OPA. The feature flag
--enable-policy=false can easily disable policies, or you could similarly
disable data via a single flag: --enable-data=false.

Admission control is an important element of container security strategy to
enforce policies that need Kubernetes context and create a last line of defense
for your cluster. We touch on image scanning later in this research, but know that
image scanning can also be enforced via a Kubernetes admission controller.

23OWASP Top 10 for Kubernetes | Lack of centralized policy enforcement

https://sysdig.com/blog/kubernetes-admission-controllers/
https://github.com/open-policy-agent/kube-mgmt
https://sysdig.com/blog/image-scanning-admission-controller/

Runtime detection
It’s important to standardize the deployment of security policy configurations
to all clusters if they mirror the same configuration. In the case of radically
different cluster configurations, they might require uniquely designed security
policies. In either instance, how do you know which security policies are
deployed in each cluster environment? That’s where Falco comes into play.

Let’s assume that the cluster is not using kube-mgmt, and there’s no
centralized way to manage the admission controllers. A user accidentally
creates a ConfigMap with private credentials exposed within the ConfigMap
manifest. Unfortunately, no admission controller was configured in the newly
created cluster to prevent this behavior. In a single rule, Falco can alert
administrators when this very behavior occurs:

- rule: Create/Modify Configmap With Private Credentials

 desc: >

 Detect creating/modifying a configmap containing a

private credential

 condition: kevt and configmap and kmodify

and contains_private_credentials

 output: >-

 K8s configmap with private credential

(user=%ka.user.name verb=%ka.verb

configmap=%ka.req.configmap.name namespace=%ka.target.namespace)

 priority: warning

 source: k8s_audit

 append: false

 exceptions:

 - name: configmaps

 fields:

 - ka.target.namespace

 - ka.req.configmap.name

This Falco rule sources the Kubernetes audit logs to show examples of private
credentials that might be exposed in ConfigMaps in any namespace. The
private credentials are defined as any of these conditions:

condition: (ka.req.configmap.obj contains “aws_access_key_id” or

ka.req.configmap.obj contains “aws-access-key-id” or

ka.req.configmap.obj contains “aws_s3_access_key_id” or

ka.req.configmap.obj contains “aws-s3-access-key-id” or

ka.req.configmap.obj contains “password” or

ka.req.configmap.obj contains “passphrase”)

24OWASP Top 10 for Kubernetes | Lack of centralized policy enforcement

K08:2022

Secrets management failures
In Kubernetes, a Secret is an object designed to hold sensitive data, like
passwords or tokens. To avoid putting this type of sensitive data in your
application code, you can simply reference the Kubernetes Secret within the
pod specification. This enables engineers to avoid hard coding credentials and
sensitive data directly in the pod manifest or container image.

Regardless of this design, Kubernetes Secrets can still be compromised. The
native Kubernetes Secrets mechanism is essentially an abstraction – the data
still gets stored in the aforementioned etcd database, and it’s turtles all the way
down. As such, it’s important for businesses to assess how credentials and keys
are stored and accessed within Kubernetes Secrets as part of a broader secrets
management strategy. Kubernetes provides other security controls, which
include data-at-rest encryption, access control, and logging.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

8

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1

App2

K08
Secret
Management

• Encrypt secrets at rest

• Address Security
Misconfigurations

• Ensure Logging and
Auditing is in Place

1

25OWASP Top 10 for Kubernetes | Secrets management failures

https://kubernetes.io/docs/concepts/configuration/secret/

Secrets at Rest - Encryption
One major weakness with the etcd database used by Kubernetes is that it
contains all data accessible via the Kubernetes API, and therefore can allow
an attacker extended visibility into secrets. That’s why it’s incredibly important
to encrypt secrets at rest.

As of v.1.7, Kubernetes supports encryption at rest. This option will encrypt secret
resources in etcd, preventing parties that gain access to your etcd backups from
viewing the content of those secrets. While this feature is currently in beta and not
enabled by default, it offers an additional level of defense when backups are not
encrypted, or an attacker gains read access to etcd.

Here’s an example of creating the EncryptionConfiguration custom resource:

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

 - resources:

 - secrets

 providers:

 - aescbc:

 Keys:

 - name: key1

 secret: <BASE 64 ENCODED SECRET>

 - identity: {}

Addressing security misconfigurations
Aside from ensuring secrets are encrypted at rest, you need to prevent
secrets from getting into the wrong hands. We discussed how vulnerability
management, image scanning, and network policy enforcement can help
protect applications from compromise. However, to prevent secrets (sensitive
credentials) from being leaked, you should lock down RBAC wherever possible.

Keep all service account and user access to least privilege. There should be
no scenario where users are “credential sharing” – essentially using a service
account like “admin” or “default.” Each user should have clearly defined service
account names such as “Nigel,” “William,” or “Douglas.” If a service account is
doing something that it shouldn’t be, you can easily audit the account activity
and/or audit the RBAC configuration of third-party plug-ins and software
installed in the cluster to ensure that access to Kubernetes Secrets is not
granted unnecessarily to a user like Nigel, who does not require full elevated
administrative privileges.

In the following scenario, a ClusterRole grants read access to secrets in the
test namespace. In this case, the user assigned to this cluster role will have no
access to secrets outside of this oddly specific namespace.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

Metadata:

 name: secret-reader

 namespace: test

Rules:

- apiGroups: [“”]

 resources: [“secrets”]

 verbs: [“get”, “watch”, “list”]

26OWASP Top 10 for Kubernetes | Secrets management failures

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://sysdig.com/blog/cspm-least-privilege-principle/

Ensuring that logging and auditing is in place
Application logs help developers and security teams better understand what is
happening inside the application. The primary use case for developers is to assist
with debugging problems that affect their application’s performance. In many
cases, shipping logs to a monitoring solution like Grafana or Prometheus improves
the time to respond to cluster events such as availability or performance issues.
Most modern applications, including container engines, have some kind of logging
mechanism supported by default.

The easiest and most adopted logging method for containerized applications
is writing to standard output (stdout) and standard error streams. In the below
example for Falco, a line is printed for each alert:

stdout_output:

 enabled: true

To identify potential security issues that arise from events, Kubernetes admins
can simply stream event data like cloud audit logs or general host syscalls to
the Falco threat detection engine.

By streaming the standard output (stdout) from the Falco security engine
to Fluentd or Logstash, additional teams such as platform engineering or
security operations can capture event data easily from cloud and container
environments. Organizations can store the more useful security signals as
opposed to just raw event data in Elasticsearch or other security information
and event management (SIEM) solutions.

Dashboards can also be created to visualize security events and alert incident
response teams:

10:20:22.408091526: File created below /dev by untrusted program

(user=nigel.douglas command=%proc.cmdline file=%fd.name)

27OWASP Top 10 for Kubernetes | Secrets management failures

https://falco.org/
https://www.fluentd.org/
https://www.elastic.co/logstash/
https://www.elastic.co/elasticsearch/

K02:2022

Supply chain vulnerabilities
After the four risks arising from misconfigurations, we will now detail those
related to vulnerabilities.

Supply chain attacks are on the rise, as seen with the SolarWinds breach,
in which their Orion software solution was compromised by the Russian
threat group APT29 (commonly known as Cozy Bear). This was a long-
running zero-day attack, which means that the SolarWinds customers who
had Orion running in their environments were not aware of the compromise.
APT29 adversaries would potentially have access to non-air-gapped Orion
instances via this SolarWinds exploit.

SolarWinds is just one example of a compromised solution within the
enterprise security stack. In the case of Kubernetes, a single containerized
workload alone can rely on hundreds of third-party components and
dependencies, making trust of origin at each phase extremely difficult. These
challenges include, but are not limited to, image integrity, image composition,
and known software vulnerabilities.

Let’s dig deeper into each of these.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1 2

2

App2 2

2

K02
Supply Chain
Vulnerabilities

• Image Integrity

• Image Composition

• Known Software
Vulnerabilities

1

28OWASP Top 10 for Kubernetes | Supply chain vulnerabilities

https://sysdig.com/blog/software-supply-chain-security/
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/
https://attack.mitre.org/groups/G0016/
https://www.ibm.com/topics/zero-day

Images
A container image represents binary data that encapsulates an application and
all of its software dependencies. Container images are executable software
bundles that can run stand-alone (once instantiated into a running container) and
make very well-defined assumptions about their runtime environment.

The Sysdig Threat Research Team (TRT) performed an analysis of over
250,000 Linux images in order to understand what kind of malicious payloads
are hiding in the containers’ images on Docker Hub.

The Sysdig TRT collected malicious images based on several categories,
as shown above. The analysis focused on two main categories: malicious
IP addresses or domains, and secrets. Both represent threats for people
downloading and deploying images that are available in public registries, such
as Docker Hub, exposing their environments to high risks.

Additional guidance on image scanning can be found in the research of 12
image scanning best practices. This advice is useful whether you’re just
starting to run containers and Kubernetes in production, or you want to embed
more security into your current DevOps workflows.

Cryptomining

Other

Dynamic
DNS

Dynamic
DNS

Newly registered
 domains

Proxy
avoidance

Hacking

Embedded
secrets

608

281

134

129
38

33

288

266

Malicious Image
Categories

29OWASP Top 10 for Kubernetes | Supply chain vulnerabilities

https://www.youtube.com/watch?v=wr4gpKBO3ug
https://sysdig.com/blog/analysis-of-supply-chain-attacks-through-public-docker-images/
https://sysdig.com/blog/image-scanning-best-practices/
https://sysdig.com/blog/image-scanning-best-practices/

Dependencies
When you have a large number of resources in your cluster, you can easily lose
track of all relationships between them. Even “small” clusters can have way
more services than anticipated by virtue of containerization and orchestration.
Keeping track of all services, resources, and dependencies is even more
challenging when you’re managing distributed teams over multicluster or
multicloud environments.

Kubernetes doesn’t provide a mechanism by default to visualize the
dependencies between your deployments, services, or persistent volume
claims (PVCs). KubeView is a great open source tool to view and audit
intracluster dependencies. It maps out the API objects and how they are
interconnected. Data is fetched in real time from the Kubernetes API. The
status of some objects (pods, ReplicaSets, deployments) is color-coded red/
green to represent their status and health.

30OWASP Top 10 for Kubernetes | Supply chain vulnerabilities

Registry
The registry is a stateless, scalable server-side application that stores and lets
you distribute container images.

Kubernetes resources that implement images such as pods, deployments, etc.,
will use imagePull secrets to hold the credentials necessary to authenticate
to the various image registries. Like many of the problems we have discussed
in this section, there’s no inherent way to scan images for vulnerabilities in
standard Kubernetes deployments.

But even on a private, dedicated image registry, you should scan images for
vulnerabilities. But Kubernetes doesn’t provide a default, integrated way to do
this out of the box. You should scan your images in the continuous integration/
continuous delivery (CI/CD) pipelines used to build them as part of a shift-left
security approach. See the research about shift-left developer-driven security
for more details.

Sysdig has authored detailed, technical guidance with examples on how to
scan images for common CI/CD services, providing another layer of security to
prevent vulnerabilities in your pipelines:

• Github actions

• Gitlab pipelines

• Azure pipelines

• Jenkins

Another layer of security is a process of signing and verifying the images
sent to registries or repositories. This reduces supply chain attacks by
ensuring authenticity and integrity. It protects Kubernetes development
and deployments, and provides better control of the inventory of containers
running at any given time.

31OWASP Top 10 for Kubernetes | Supply chain vulnerabilities

https://sysdig.com/blog/strengthen-cybersecurity-with-shift-left-and-shield-right-practices/#:~:text=your%20cybersecurity%20strategy.-,Shift%20left%3A%20Developer%2Ddriven%20security,-An%20exploitable%20vulnerability
https://sysdig.com/blog/image-scanning-github-actions/
https://sysdig.com/blog/gitlab-ci-cd-image-scanning/
https://sysdig.com/blog/container-image-scanning-for-azure-pipelines-with-sysdig/
https://sysdig.com/blog/docker-scanning-jenkins/
https://sysdig.com/blog/secure-kubernetes-deployment-signature-verification/

K01:2022

Broken authentication
mechanisms
How to securely access your Kubernetes cluster should be a priority, and
proper authentication in Kubernetes is key to avoiding most threats in the
initial attack phase. Kubernetes administrators may interact with a cluster
directly through Kubernetes APIs or the Kubernetes dashboard. Technically
speaking, the Kubernetes dashboard in turn communicates to those APIs,
such as the API server or Kubelet APIs. Enforcing authentication universally
is a critical security best practice.

As seen with the Tesla cryptomining incident in 2019, the attacker
infiltrated the Kubernetes dashboard, which was not protected by a
password. Since Kubernetes is highly configurable, many components end
up not being enabled, or use basic authentication so that they can work in a
number of different environments. This presents challenges when it comes
to cluster and cloud security postures.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

6

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

PODPOD

App1

App2

K06
Broken
Authentication

• Avoid using certificates
for end-user
authentication

• Never roll your own
authentication

• Enforce MFA when
possible

• Don’t use Service
Account tokens from
outside of the cluster

• Authenticate users and
external services using
short-lived tokens

1

32OWASP Top 10 for Kubernetes | Broken authentication mechanisms

https://sysdig.com/blog/detecting-cryptomining-attacks-in-the-wild/

If a person wants to authenticate against a cluster, a main area of concern will be
credentials management. The most likely case is that they will be exposed by an
accidental error, leaking in one of the configuration files such as .kubeconfig.

Inside your Kubernetes cluster, the authentication between services and
machines is based on service accounts. It’s important to avoid using
certificates for end-user authentication or service account tokens from outside
of the cluster, because that would increase the risk. Therefore, we recommend
continuously scanning for secrets or certificates that may be exposed
by mistake.

OWASP recommends that, no matter what authentication mechanism
you choose, you should force humans to provide a second method
of authentication. If you use a cloud IAM capability and two-factor
authentication is not enabled, for instance, you should be able to detect it
at runtime in your cloud or Kubernetes environment to speed up detection
and response. For this purpose, you can use Falco, an open source threat
detection engine that triggers alerts at runtime according to a set of
YAML-formatted rules.

- rule: Console Login Without Multi Factor Authentication

 desc: Detects a console login without using MFA.

 condition: >-

 aws.eventName=”ConsoleLogin” and not aws.errorCode exists and

 jevt.value[/userIdentity/type]!=”AssumedRole” and

 jevt.value[/responseElements/ConsoleLogin]=”Success” and

 jevt.value[/additionalEventData/MFAUsed]=”No”

 output: >-

 Detected a console login without MFA (requesting

user=%aws.user, requesting

 IP=%aws.sourceIP, AWS region=%aws.region)

 priority: critical

 source: aws_cloudtrail

 append: false

 exceptions: []

Falco helps you identify where insecure logins exist. In this case, it’s a login
to the AWS console without multifactor authentication (MFA). However,
if an adversary were able to access the cloud console without additional
authorization, they would likely be able to then access Amazon’s Elastic
Kubernetes Service (EKS) via the CloudShell.

That’s why it’s important to have MFA for cluster access, as well as the
managed services powering the cluster – Google Kubernetes Engine (GKE), EKS,
Azure Kubernetes Service (AKS), Intersight Kubernetes Service (IKS), etc.

But it is not only important to protect access to Kubernetes. If you use other
tools on top of Kubernetes to, for example, monitor events, you must protect
those as well. As explained at KubeCon 2022, an attacker could exploit an
exposed Prometheus instance and compromise your Kubernetes cluster.

33OWASP Top 10 for Kubernetes | Broken authentication mechanisms

https://kubernetes.io/docs/reference/access-authn-authz/authentication
https://falco.org/
https://sysdig.com/blog/why-mfa-prevents-attacks/
https://sysdig.com/blog/exposed-prometheus-exploit-kubernetes-kubeconeu/
https://sysdig.com/blog/exposed-prometheus-exploit-kubernetes-kubeconeu/

K10:2022

Outdated and vulnerable
Kubernetes components
Effective vulnerability management in Kubernetes is difficult. However,
there are a set of best practices to follow.

Kubernetes admins must follow the latest up-to-date common vulnerabilities
and exposures (CVE) databases, monitor vulnerability disclosures, and apply
relevant patches where applicable. If not, Kubernetes clusters may be exposed
to these known vulnerabilities, making it easier for an attacker to perform
techniques that take full control of your infrastructure and potentially pivot to
your cloud tenant where you’ve deployed clusters.

C O N T A I N E R R E G I S T R YC O N T A I N E R R E G I S T R Y

Controller

Scheduler
K8s API

etcd

Istio

C O N T A I N E R R U N T I M E

O S

C O N T R O L P L A N EC O N T R O L P L A N E

10

10

10

10

Ingress

kube-proxy

kubelet

W O R K E R SW O R K E R S

10

10

PODPOD

App1

App2

10

10

K10
Vulnerable K8s
Components

• kubelet

• etcd

• kube-apiserver

1

34OWASP Top 10 for Kubernetes | Outdated and vulnerable Kubernetes components

https://sysdig.com/blog/vulnerability-assessment/

The large number of open source components in Kubernetes, as well as the
project release cadence, make CVE management particularly difficult. In v.
1.25 of Kubernetes, a new security feed was released to Alpha that groups
and updates the list of CVEs that affect Kubernetes components.

Here is a list of the most famous ones:

• CVE-2021-25735 – Kubernetes validating admission webhook bypass.

• CVE-2020-8554 – Unpatched man-in-the-middle (MITM) attack
in Kubernetes.

• CVE-2019-11246 – High-severity vulnerability affecting the kubectl tool.
If exploited, it could lead to a directory traversal.

• CVE-2018-18264 – Privilege escalation through the
Kubernetes dashboard.

To detect these vulnerable components, you should use tools that check or
scan your Kubernetes cluster, such as kubescape or kubeclarity, or look to a
commercial platform offering such as Sysdig Secure.

Today, the vulnerabilities released directly target the Linux kernel, affecting
the containers running on the cluster rather than the Kubernetes components
themselves. Even so, you must keep an eye on each new vulnerability discovered
and have a plan to mitigate the risk as soon as possible.

35OWASP Top 10 for Kubernetes | Outdated and vulnerable Kubernetes components

https://sysdig.com/blog/kubernetes-1-25-whats-new/#3203
https://sysdig.com/blog/kubernetes-1-25-whats-new/#3203
https://kubernetes.io/docs/reference/issues-security/official-cve-feed/
https://sysdig.com/blog/cve-2021-25735-kubernetes-admission-bypass/
https://sysdig.com/blog/detect-cve-2020-8554-using-falco/
https://sysdig.com/blog/how-to-detect-kubernetes-vulnerability-cve-2019-11246-using-falco/
https://sysdig.com/blog/privilege-escalation-kubernetes-dashboard/
https://github.com/kubescape/kubescape
https://github.com/openclarity/kubeclarity
https://sysdig.com/products/secure/

Conclusion
In this e-book, we presented important information and best practices for
addressing the OWASP Top 10 for Kubernetes, a list of the most critical
security risks impacting Kubernetes environments. Deploying and operating
Kubernetes is a complex journey, let alone securing it. With the right tools and
practices, you can effectively address these security risks and protect your
applications. Follow the information provided in this e-book along with our
companion resource, the Kubernetes Security Guide, to be well on your way to
effectively monitoring and securing your Kubernetes environments.

In addition to OWASP Top 10, the “Sysdig 2023 Cloud-Native Security and
Usage Report” provides valuable insights into the latest threats and trends
in cloud‐native environments, and can help you gain a deeper understanding
of the evolving landscape and how to take proactive steps to secure your
environment. Don’t wait until it’s too late. Stay ahead of the game with Sysdig.

36OWASP Top 10 for Kubernetes | Conclusion

https://sysdig.com/2024-cloud-native-security-and-usage-report/
https://sysdig.com/2024-cloud-native-security-and-usage-report/

E-BOOK

COPYRIGHT © 2023-2024 SYSDIG,INC.

ALL RIGHTS RESERVED.

EBK-010 REV. B 4/24

About Sysdig

In the cloud, every second counts. Attacks move at warp speed, and security teams must protect
the business without slowing it down. Sysdig stops cloud attacks in real time, instantly detecting
changes in risk with runtime insights and open source Falco. Sysdig correlates signals across
cloud workloads, identities, and services to uncover hidden attack paths and prioritize real risk.
From prevention to defense, Sysdig helps enterprises focus on what matters: innovation.

Sysdig. Secure Every Second.

See Sysdig in action.

R E Q U E S T A D E M O

Take the next step.

https://sysdig.com/request-a-demo/

