
Six Keys for Scaling
Prometheus

A technology reference architecture is outlined above for reference.
Here are the six keys for scaling Prometheus:

Figure 1: Do-It-Yourself Scaled Prometheus Technology Reference Architecture

Containers are ephemeral and difficult to troubleshoot. They require
comprehensive, granular and context-rich data to anticipate and prevent
issues that can impact user experience. In order to effectively manage
the cloud native applications, DevOps teams require a toolset designed
specifically to analyze, predict and prevent issues in containers, Kubernetes
services, and Cloud-native infrastructure.

Prometheus has become the de-facto standard for DevOps / SRE teams to
monitor Kubernetes workloads. It offers a number of advantages - it’s easy
to set up, implement and maintain on a single server. Prometheus is also well
suited for highly dynamic Kubernetes-based environments.

As the scope of Kubernetes development and production deployment
increases in enterprises, DevOps / SRE teams quickly find the need to scale
Prometheus-based monitoring capability. Several open source tools are
available for scaling Prometheus.

Often, each DevOps team spins up their own instances of
Kubernetes, Prometheus and Grafana in multiple environment
configurations (dev, test, prod) to monitor workloads
independently. Enterprises end up with multiple visualization and
analytics tool instances, such as Grafana. However, a lack of global
view across multiple Kubernetes clusters and cloud stacks poses
problems like:

• RBAC and security policies need to be duplicated across multiple
instances.

•Developers will take more time to diagnose complex problems.

1

Centralize Visualization
& Analytics Capability

6 KEYS FOR SCALING PROMETHEUS

B E F O R E A F T E R

Figure 2: Centralize Visualization & Analytics Capability

Consolidate Grafana Instances. The first step is to
consolidate Grafana instances by migrating and consolidating
configurations, dashboards and alerts. The global view helps
DevOps teams monitor the entire Kubernetes install base in a
consistent approach, and enables the teams to conduct faster
root cause analysis.

2

Hierarchical federation of
Prometheus servers may be an
alternative for some use cases.
Hierarchical federation allows
Prometheus to scale to environments
with tens of data centers and
millions of nodes. In this use case,
the federation topology resembles a
tree, with higher-level Prometheus
servers collecting aggregated time

series data from a larger number of
subordinated servers. Hierarchical
federation of Prometheus can be
used to address business continuity
requirements – global monitoring
still works even when some nodes
experience outage. However,
hierarchical federation leads to
reduced levels of granularity of
metrics data at global view.

A single Prometheus server can easily handle millions
of time series. As your systems scale beyond that,
Prometheus can scale too. There are a few options for
scaling Prometheus - vertical, hierarchial federation as
well as horizontal sharding. Each approach has certain
limitations and we have outlined them below.

While vertically scaling Prometheus is a good starting
point, this approach has limitations. As DevOps reach
the limits of vertical scaling, they experience availability
issues and thus a loss of metrics.

Functional sharding offers a highly scalable Prometheus
solution. Horizontal sharding approach enables splitting
monitoring jobs among many Prometheus nodes, while
still ensuring a consistent top-level view of metrics for
graphing and alerting purposes. Horizontal sharding
can be achieved by splitting jobs by namespace, geo,

customer, environment type. Uneven and volatile
monitoring data makes it difficult to develop correct
granularity for functional sharding. This leads to reduced
levels of granularity of metrics data at global view, as
well as higher hardware and operational Costs.

This step is more complex to setup and requires much
more involvement to manage than a normal Prometheus
deployment, so it should be avoided for as long as
possible. It is imperative that the DevOps teams build a
sandbox to test in before releasing functional sharding
capability to Production.

Scale Vertically and
then Horizontally

6 KEYS FOR SCALING PROMETHEUS

3
6 KEYS FOR SCALING PROMETHEUS

B E F O R E A F T E R

L O N G - T E R M
S T O R A G E

Figure 3: Enable Long-term Storage, Down sampling and Variable Metric Retention

Extend Prometheus deployment to include long-term
storage. There are open source solutions, including
Thanos or Cortex, and a supported commercial
solution by Sysdig. DevOps teams need to assess
the deployment options, evaluate the tradeoffs and
implement the solution that best fits their needs.

Retain data to enable trend and comparative analysis.
Historical data can be used to conduct Service Level
Objectives (SLO) trend analysis, to compare SLOs
across multiple workloads, geos and namespaces,
and to potentially implement corrective actions to
improve SLOs.

Cloud native applications generate High Dimensionality
(HD) metric data. In HD or High Cardinality metric
data, each metric can be broken down to several sub
components or metrics. Querying and storing metrics
with all of the dimensions quickly becomes cost
prohibitive, slow, and impossible to use.

Prometheus, by design, is not built for long-term
storage of metrics as it uses only one datastore. Lack
of long-term storage leads to performance issues
due to insufficient visibility. Cloud-scale system
implementations can produce metrics data in the order
of terabytes per day. In order to address the multitude
of storage requirements, DevOps teams need to
augment Prometheus with a long-term storage solution.

Enable Long-term
Retention and Down
Sampling

Implement policies to improve corporate compliance.
Enterprises tend to have specific data retention
policies. These policies govern the type of metrics that
need to be captured, the retention period, and the
type of storage required (operational data store vs.
backup datastore).

4

Use reverse proxy and apply TLS at the
network layer. Reverse proxies are typically
implemented to help increase security,
performance, and reliability. Install reverse
proxy in front of Prometheus servers to
apply encryption at proxy layer.

Use security features in Grafana and Cortex to improve
security posture. RBAC functionality is not available
out-of-box. Grafana enables configuration of users and
groups to limit access to predefined dashboards. Cortex
enables multi-tenancy to restrict access at a tenant level.
Alternatively, DevOps teams can integrate SSO through
an authentication proxy to provide more granular
levels of security. RBAC can be applied at storage,
visualization, and analytics layers by integrating them
into enterprise-owned Single Sign-On (SSO) software.

Mission critical systems need to adhere to corporate and
regulatory compliance requirements. Security is a critical
requirement for any enterprise-grade deployment. Any tool
or software should support two capabilities – encrypted
communication and access control. TLS (Transport Layer
Security) encryption of the HTTP endpoints and Role-Based
Access Control (RBAC) are not available in out-of-the-box
Prometheus, Grafana and Cortex distributions.

Improve Corporate
Compliance with Robust
Access Controls

6 KEYS FOR SCALING PROMETHEUS

L O N G - T E R M
S T O R A G E

B E F O R E A F T E R

L O N G - T E R M
S T O R A G E

R E V E R S E P R O X Y

Figure 4: Improve Corporate Compliance with Role-based Access Control (RBAC)

As DevOps teams expand their usage of Prometheus,
they are looking for ways to use the resources in
efficient ways by sharing resources across multiple
teams (groups) and users. The operations teams are
looking for a mechanism to distribute and allocate costs
associated with operating these platforms across the
teams by ‘charging them back’ for their use.

5

Track and allocate
monitoring costs

Develop chargeback to the customers and
enable them to optimize expenses. The first
step is to collect the information and present
it to the DevOps teams (i.e., ‘show back’).
Breaking it down further, there are three steps
for operation teams to enable chargeback:

 • Understand consumption by collecting the
desired metrics at the desired granularity
(i.e., usage).

 • Co-relate consumption to the selected
grouping using labels, tags, etc. (i.e., show
back).

 • Integrate show back into internal reporting
and billing systems for budget-based IT cost
allocation (i.e., chargeback).

6 KEYS FOR SCALING PROMETHEUS

You must also consider the cost
of managing all your Prometheus
deployments over time as it can scale up
very quickly. Application exporters and
yaml configurations must be constantly
evaluated and kept up to date. Every full-
time equivalent resource that is dedicated
to maintaining DIY Prometheus at scale is
one less developer or SRE that could be
writing innovative code that transforms
and grows your business.

6

Prometheus has been a game-changer in the
monitoring landscape for cloud-native applications,
just like Kubernetes has been to container
orchestration. However, even large tech companies
find the challenges of managing and scaling
Prometheus in a DIY fashion daunting. With so
many yaml configurations and the complicated
exporter landscape to maintain, configuration errors and
incompatibilities will eventually creep into your Promentheus
environments.

To simplify this complexity, organizations should consider a managed
Prometheus solution that provides out-of-the-box functionality to enable
Prometheus monitoring and scaling without sacrificing open source compatibility.
Let’s consider Sysdig’s managed Prometheus service as an example:

DIY Build vs. Buy
6 KEYS FOR SCALING PROMETHEUS

DIY vs. Sysdig

DIY Sysdig

PromQL only for queries PromQL and/or simple Form UI to build queries

Imported community dashboards Automatic pre-configured dashboards

Lots of time managing exporters Automated discovery and assisted
configuration of curated exporters

Several weeks of time series storage Long term storage built-in

Configure and manage Thanos or Cortex Built-in scaling with no management required

DIY Access Controls Support for RBAC, SSO, LDAP, and Sysdig Teams

Conclusion

Organizations should consider these six areas when considering how
they will scale Prometheus:

Centralization of metrics

Vertical vs. horizontal scaling

Long term metric retention

Compliance and access controls

Tracking costs

Managed service options

Sysdig offers an enterprise managed Prometheus service that can help
avoid the cost and complexity associated with scaling and running
multiple Prometheus deployments. Visit sysdig.com or contact us to
learn how easy Prometheus monitoring can be!

Copyright © 2022 Sysdig, Inc. All rights reserved. CL-002 Rev.C 6/22

http://sysdig.com

