
Securing Containers on
AWS Fargate Checklist

AWS Fargate is a popular serverless compute engine for containers that works with both Amazon ECS and Amazon
EKS. Fargate makes it easy for you to focus on building your applications. It removes the need to provision and
manage servers, and lets you specify and pay for resources per application.

While serverless environments free you to focus on modern application development there are also some
challenges to be addressed. Serverless environments introduce an abstraction layer that hides the underlying
infrastructure from the DevOps and security teams. Without access to the host or traditional monitoring tools,
your visibility into workload activity can be limited, leaving you blind to threats. Once you identify a security or
performance issue, teams need a detailed record of activity to respond to incidents and troubleshoot issues.

The key is to continuously scan for cloud and container vulnerabilities, detect abnormal activity, reduce your
risk from cloud misconfigurations and prioritize threats to ensure your containers on Fargate are secure across
their entire life cycle. These five key workflows will enable you to address the most critical security and visibility
requirements so you can confidently and securely run containers on AWS Fargate.

No visibility into the
underlying infrastructure

Can’t alert on vulnerabilities
and threats

Need a detailed record of
exactly what happened after
the Fargate task is gone

1

Automatically scan Fargate
containers in your cloud

SECURING CONTAINERS ON AWS FARGATE CHECKLIST

As the number of container images, versions, and builds proliferates, you lose control of what software is being
used and whether software updates are applied. Embedding security into your delivery pipeline as you build
applications helps you identify and address vulnerabilities faster, and keeps your developers productive. You can
start by automatically triggering scanning within your Elastic Container Registry (ECR), and then take these steps
to maintain continuous control:

	• Automatically scan images tied to a Fargate task and prevent risky images from being deployed.

	• Protect sensitive data by directly scanning images in your cloud account.

	• Validate the build configuration (Dockerfile instructions) and image attributes (like size and labels).

	• Identify new vulnerabilities that impact the image once the container has been deployed.

	• Create different policies for each workflow, including images from public repositories and images built
in-house. Consider different checks for each app.

	• Alert the right team for each issue (notify the owner of each image and integrate with your CI/CD tool to
show the scan results directly in that context).

By integrating security analysis and compliance validation into this process, you can address issues earlier so you
don’t slow down deployment. This is known as “shifting security left.”

2

You can reduce runtime risk by configuring applications with minimum privilege and access permissions. Your 	
policies should also monitor for anomalous behavior and configuration drift. Creating policies that can prevent
attacks without breaking the applications is challenging. Be sure to capture a detailed record for incident response
even after the Fargate task is gone. Consider these steps for reducing your runtime risk.

	• Create and maintain runtime security policies that observe workload behavior, monitor cloud activity, and
identify anomalous events in Fargate.

	• Leverage tools to automatically build and customize policies or use out-of-the-box Falco rules.

	• Implement least-privilege and compliant network policies with Kubernetes and app metadata.

	• Visualize network communication in and out of a particular pod/service/app/tag over time with
topology maps.

	• Automate use of events in AWS CloudTrail logs to detect threats and configuration changes on cloud
services.

	• Monitor Fargate task usage to detect anomalous activity. Tracking network connections gives you
information about the attack, runtime behavior, and spread vectors. Some attacks are first detected as
monitoring alerts rather than security violations.

	• Streamline incident response and quickly respond to container and cloud security threats with a detailed
activity record in Fargate. Make sure you have a unified view of cloud and container threats across your
multi cloud environment. Use capture files based on syscall data to quickly answer the questions of “when,”
“what,” “who,” and “why” for your container security incidents. This detailed record allows you to conduct
post-mortem analysis and determine root cause, even after containers are gone.

Detect and respond to
runtime threats

SECURING CONTAINERS ON AWS FARGATE CHECKLIST

Continuous cloud security is required to immediately identify configuration errors and suspicious behavior.
According to the shared responsibility model it is the responsibility of AWS users to secure their application and
data. The following steps can help you validate the security posture for your Fargate workloads:

	• Automatically discover and inventory the AWS assets running in your environment including systems,
applications, and services like VPCs, RDS, S3 buckets, ECS, EKS, and Fargate.

	• Flag misconfigurations based on open-source Cloud Custodian rules. Check your cloud configuration
periodically against Center for Internet Security (CIS) benchmarks to identify risky configuration settings
(e.g., public storage buckets, exposed security groups and access controls, etc.) and take steps to
remediate violations.

	• Detect unexpected changes and suspicious activity e.g changing access rights to sensitive data across
all cloud accounts, users, and services by parsing AWS CloudTrail logs using open-source Falco rules.
Investigate all suspicious activity performed by a specific user to see the breadth of impact.

Continuously manage
Fargate posture

SECURING CONTAINERS ON AWS FARGATE CHECKLIST

3

Continuously validate
compliance

SECURING CONTAINERS ON AWS FARGATE CHECKLIST

4

Implement compliance checks to meet regulatory compliance standards (CIS, SOC2, PCI, NIST 800-53, etc.) across
containers, Kubernetes, and cloud and benchmark against best practices. Monitor cloud services continually for
configuration drift that can impact compliance. Measure compliance progress with scheduled assessments and
detailed reports.

	• Check your container and platform configuration against CIS benchmarks for AWS, Docker, and Kubernetes.

	• Validate compliance during build-time by mapping container image scanning policies to standards (e.g., NIST,
PCI, SOC2, or HIPAA) or internal compliance policies (e.g., blacklisted images, packages, or licenses).

	• Implement File integrity Monitoring (FIM) to detect tampering of critical system files, directories, and
unauthorized changes. FIM is a core regulatory requirement for a number of compliance standards.

	• Manage compliance at runtime as well. Check for best practices (e.g., don’t run privileged containers and
don’t run containers as root) and look for known adversary tactics and techniques. Achieve and maintain
compliance with security frameworks mapping through a rich set of Falco rules for security standards
and benchmarks, like NIST 800-53, PCI DSS, SOC 2, MITRE ATT&CK®, CIS AWS, and AWS Foundational
Security Best Practices.

	• Provide proof of compliance with capture files that incorporate detailed forensics data. It’s important to
record configuration and policy changes, including an audit of runtime changes for compliance audits.

Monitor and troubleshoot
Fargate containers

SECURING CONTAINERS ON AWS FARGATE CHECKLIST

Containers and cloud services are dynamic and churn constantly. Visibility into the health and performance of your
AWS workloads and infrastructure is critical for ensuring the availability of your cloud applications.

	• Implement monitoring built for cloud native infrastructure, applications, and AWS services. Microservices
can be distributed across multiple instances, and containers can run across different regions and multi-
cloud infrastructure. To improve application performance and rapidly solve issues, you need deep container,
infrastructure, and service visibility and granular metrics enriched with Kubernetes and cloud context.

	• Immediately identify owners for issue resolution using container and cloud context.

	• Identify pods consuming excessive resources and monitor capacity limits.

	• Tap into open-source Prometheus for monitoring AWS services and cloud-native applications. Extract
Prometheus metrics via AWS CloudWatch for Fargate, and view with dashboards in Grafana.

	• Get productive quickly by using Promcat.io, a resource catalog of Prometheus integrations with curated,
documented, and supported monitoring integrations for Kubernetes platform and cloud-native services.

	• Capture and store data to ensure you can investigate and solve issues quickly. Once a container dies,
everything inside is gone. You can’t shell into a stopped container to see what happened! Audit logs and
detailed activity information will help you successfully determine root cause, even for containers that are no
longer running.

5

Copyright © 2021 Sysdig, Inc. All rights reserved. CL-012 Rev. A 4/21

Dig deeper into how Sysdig can continuously secure your
containers on AWS Fargate.

S T A R T Y O U R F R E E T R I A L

G E T A P E R S O N A L I Z E D D E M O

https://sysdig.com/company/start-free-tier-platform/
https://sysdig.com/company/free-trial-platform/
https://sysdig.com/company/request-a-demo/
https://sysdig.com/company/request-a-demo/

