
Organizations adopting modern technologies such as cloud computing,
containers, and infrastructure as code (IaC) are experiencing profound
competitive gains and Capex savings. The drive to increase their digital foot‑
print, however, has created some security gaps. Application security can no
longer be the responsibility of just one department.

Of course, this is often easier said than done. A cloud native approach can
improve developer speed and agility, but 41% of cloud engineering and
security professionals surveyed cite agile methodologies as a major impact to
their cloud security efforts because they create more complexity. The survey
also found that 45% of the responding organizations building cloud native
applications suffered from an incident resulting from a known vulnerability.

Agile methodologies used by DevOps teams make traditional security
approaches untenable. The rapid pace of development leaves little time for
traditional waterfall approaches that place security testing at the end of the
software development cycle. Instead, many organizations often start with
runtime solutions that look for security vulnerabilities in production. That’s
because these solutions are perceived to be easier to implement and operate,
essentially building the engine while in flight.

Cybersecurity
Strategy Must Include
Both Shift‑Left and
Shield‑Right Approaches

To eliminate security issues pre‑deployment, teams
have to add specific expertise related to cloud‑native
security, set up additional training and education,
and “shift left” on security, moving the security review
processes and tooling to earlier design and develop‑
ment stages. The problem is, developers aren’t secu‑
rity experts and must focus on delivering business
functionality. They’re looking for automated software
composition analysis (SCA), especially as open‑source
software has become ubiquitous in development.
Today, between 70% and 90% of modern software
applications contain open‑source software, according
to the Linux Foundation and Snyk.

However, not all issues can be addressed prior to
delivery. You can’t test for issues that are entirely novel,
or the unknown. There’s often latency between identi‑
fying an issue and when it is ultimately fixed. Code may
also be owned by third parties, which raises concerns
about who’s responsible for fixing found issues. A
shield‑right security approach, which is preventing
or mitigating attacks while the software is running,
is equally critical to prevent or mitigate attacks and
enable digital forensics and incident response (DFIR).
Runtime security underpins all information security
and cybersecurity programs.

DevOps teams must bring together people, processes,
and technologies to create a perpetual cycle of secu‑
rity and future‑proof their digital estate. There has
never been a more critical time to revisit cybersecu‑
rity strategy. DevOps teams are primed for even more
rapid innovation, but this is also while disruptions in
the supply chain, economy, and global peace persist.
And with faster innovation comes a greater vulnera‑
bility backlog. Risk of ransomware attack ranks high
for security leadership, and these attacks perpetuate
through exploitation of known vulnerabilities. Gartner
estimates that by 2025, at least 75% of IT organizations
will have faced one or more ransomware attacks.

Patchable Vulnerabilities in Runtime

85%
Vulnerable

15%
None

75% high or critical vulnerabilities

Source: Sysdig 2022 Cloud‑Native Security and Usage Report

About 75% of containers are running with high or
critical severity vulnerabilities that could be patched,
and 73% of cloud accounts have publicly exposed S3
buckets, putting sensitive data at unnecessary risk.

of cloud accounts contain
publicly exposed S3 buckets

73%

Source: Sysdig 2022 Cloud‑Native Security and Usage Report

A balance of both shift‑left and shield‑right approaches
should be the goal of every security program for full
lifecycle security. Here’s why.

Cybersecurity Strategy Must Include Both
Shift‑Left and Shield‑Right Approaches

2

What is a shift‑left approach, and
what can happen without it?
A single bad line of code can have a ripple effect
throughout an entire project. The same is true for a single
security vulnerability. A shift‑left approach addresses
these security issues early in the development process
to be able to identify, manage, and eliminate them at
their origination point before deployment. Traditionally,
a shift‑left approach goes something like this:

Application security testing begins with the code.
Code security tools for software composition analysis
(SCA) and static application security testing (SAST)
help analyze code and dependencies to spot issues
early in development. They are the top two tools used
to address security concerns, according to a recent
study from the Linux Foundation and Snyk. Dynamic
code analysis plays an equally important role and
involves running code and examining the outcome,
including testing possible execution paths of the code.

Once code is in production, there should be a feed‑
back loop from issues discovered in runtime to the
underlying code. Interactive analysis tools, informed
by runtime security, allow teams to respond to vulner‑
abilities in real time, make changes, or give instruc‑
tions. Not surprisingly, DevOps teams prefer scanning
that can be fully automated as part of continuous inte‑
gration/continuous development (CI/CD) builds.

Tools have emerged that deliver a developer‑friendly
experience and actionable remediation guidance. These
solutions are fundamental to DevSecOps practices,
executing automated tests early and presenting results
to developers in the context of their workflows and
pace of development. These comprehensive testing
processes within development phases provide a
solid foundation for a smooth production release, but
cloud‑native environments add several extra layers of
security complexity.

For starters, security test automation is challenging
with respect to processes around test data manage‑
ment and operationalizing open‑source test automation
tools like Selenium scripting. And rarely do working
test environments mirror actual production environ‑
ments, which can have an unintended side effect of
invalidating test results.

Security teams also often lack visibility into all code
and potential vulnerabilities due to the sheer number
of code sources used, version tracking and manage‑
ment tools introduced, and integration points that must
be strategically selected.

DevOps teams often use third‑party and open‑source
software but they don’t control the code, so fixes may
be out of scope. Additionally, many code sources are
dependent on each other, and these dependency chains
are often nested and complex. With so many transitive
dependencies, there’s likely at least one component of
code that’s vulnerable, though whether it’s executed in
runtime or exploitable is another challenge.

Cybersecurity Strategy Must Include Both
Shift‑Left and Shield‑Right Approaches

3

There are also multiple code artifact types to parse,
such as application code, infrastructure‑as‑code (IaC),
and policy‑as‑code (PaC), each requiring rules to effec‑
tively audit for vulnerabilities and compliance. Each
code type also leads to multiple CI/CD pipelines. Not
all development teams have the skill sets or a formal‑
ized software development lifecycle process to review
all this code effectively.

Not all security issues originate from the code level.
They can result from overall designs, application
sources, infrastructure configuration, or mitigating
security controls, and those aren’t easily identified
through scanning. Scanner efficacy varies depending
on the source language and artifact type. Most secu‑
rity scanning tools are geared for security personas
(and as we’ll cover later, developers are not security
subject matter experts). Some scanning tools also don’t
provide actionable details or automate fixes.

Code analysis challenges

Static analysis of code (without executing the applica‑
tion) can lead to a higher number of potential findings,
which are sometimes disregarded by teams as false
positives or suppressed. Static analysis also can’t paint
the full picture of the complete, fully‑integrated system.

Dynamic analysis of code (while the software is
running) is not often a great fit for API‑centric archi‑
tectures or those with multiple front ends, including
mobile, because achieving good testing coverage
is challenging. Testing functionality fully so that all
aspects of code are reached is simple in theory but
difficult in practice. Dynamic analyzers are also noto‑
riously bad at detecting logic flaws since it’s difficult
to precisely locate the conditions in code that result
in this category of flaw. Dynamic analysis is also more
difficult to use in comparison to static analysis, as you
need to authenticate, authorize, and feed enough data
to the application to get better results and attain as
much code coverage as possible.

Interactive analysis requires some type of instru‑
menting agent to function properly, such as an appli‑
cation runtime agent, container runtime agent, or
web proxy.

It’s difficult for any subject matter expert to gauge the
relative security risks in a flood of findings, but even
more so for developers who are focused on deliv‑
ering functionality. They are not experts in triaging
findings or prioritizing remediation. There’s also the
impact of figuring out how to even fix things. Many
tools don’t provide actionable remediation advice, but
rather just a “laundry list” of vulnerabilities. Release
velocity can take a hit if security testing isn’t efficient
and thresholds aren’t set for scanner output, directly
impacting the organization’s ability to meet business
objectives. Developers need SAST and SCA tools that
provide more than just a laundry list of vulnerabili‑
ties. The tools have to provide actionable remediation
advice on how to fix problems.

Even a perfectly designed, developed, and deployed
runtime system is still prone to attack. Organizations
face many other threats that are not in scope for any
type of early‑stage testing, like ransomware, mali‑
cious crypto mining, or runtime compromises, which
is why it’s critical to balance shift‑left security with a
shield‑right approach.

Developers need SAST
and SCA tools that
provide more than
just a laundry list of
vulnerabilities. The tools
have to provide actionable
remediation advice on
how to fix problems.

Cybersecurity Strategy Must Include Both
Shift‑Left and Shield‑Right Approaches

4

What is a
shield‑right
approach, and
what can happen
without it?
A shield‑right approach emphasizes security mech‑
anisms to protect and monitor running services.
Practitioners often describe the approach as runtime
security, runtime protection, or runtime threat detec‑
tion and response, depending on their area of focus.
Such runtime capabilities are foundational for modern
cybersecurity programs, as can be seen in guidance
such as the NIST Cybersecurity Framework (CSF). An
organization must fully identify all of its systems and
code issues to understand its risk profile, which is
where security testing capabilities help. And it must
also focus on the other areas of the CSF: protect,
detect, respond, and recover.

Runtime security approaches come in many forms. For
applications and supporting infrastructure, security
teams traditionally rely on intrusion prevention systems
(IPS), firewalls, next‑generation firewalls (NGFW), and
web‑application firewalls (WAF). These tools focus on
protecting hosts, networks, or applications, and not so
much on workload (or container) context.

Organizations leveraging cloud‑native designs that
include containers or serverless technology need
modern security tools that support these abstracted and
ephemeral computing patterns, as well as support for
newer cloud hosting models like platform‑as‑a‑service
(PaaS). Security tools should offer cloud control‑plane
auditing and monitoring with agentless capabilities
that are often classified as cloud security posture

The National Institute of Standards and
Technology (NIST) offers a cybersecurity
framework to help organizations better
understand, manage, and reduce cybersecu‑
rity risks.

The framework consists of five concurrent
and continuous functions:

 • Identify: Map critical business resources
and related security risks to focus and
prioritize efforts.

 • Protect: Implement safeguards to limit the
impact of cybersecurity events on critical
business services.

 • Detect: Enable continuous monitoring and
detection to facilitate the timely discovery
of anomalies and events.

 • Respond: Ensure readiness to take action
to contain the impact of cybersecurity
incidents.

 • Recover: Develop and maintain plans to
restore services to reduce the impact of
security events.

These five functions empower professionals
across disciplines to participate in the secu‑
rity lifecycle.

Cybersecurity Strategy Must Include Both
Shift‑Left and Shield‑Right Approaches

5

management (CSPM) and cloud infrastructure enti‑
tlement management (CIEM). These capabilities help
with verifying cloud misconfigurations and mis‑permis‑
sioned resources in cloud environments, respectively.
Security tooling should also offer workload, container
runtime, and orchestration engine instrumentation,
often labeled as cloud workload protection platforms
(CWPP) or cloud native application protection plat‑
forms (CNAPP).

Ideally, these capabilities also provide a unifying
engine to gather and correlate telemetry across envi‑
ronments to support modern threat detection and
response in cloud and cloud‑native environments. Such
runtime threat detection and response is frequently
powered by ingestion and real‑time analysis of cloud
logs, which are correlated with other service or work‑
load activity. The end result is a more accurate picture
of the organization’s attack surface and how threats are
impacting the organization’s operating environments.
This is a newer breed of capabilities best described as
cloud detection and response (CDR).

But in reality, challenges arise in production that can
elude the best security efforts, which is why balancing
runtime security with development‑stage security
processes is crucial – and for similar reasons. The
vast, mixed environments, cloud‑hosting models, and
workload types all complicate implementation and
operation of security controls.

Workload visibility is worsened in containerized appli‑
cations. Containers often create blind spots that can
lead to security control failures. Tools, particularly
those not purpose‑built for container context, might
not alert when security incidents or breaches occur.
Or there may be compliance problems or service
disruptions, any of which can lead to poor perfor‑
mance or downtime.

Ephemeral workloads and environments are common
in modern designs. These resources last just a short
amount of time, making event retention and log anal‑
ysis a problem. This reality also complicates forensic

investigations and incident response. Key data for diag‑
nosis can disappear if you didn’t plan for it, leaving no
trail of what took place during execution.

The 2022 State of Cloud Security Report, Snyk

Tracing runtime issues back to the original infrastructure
configuration is also problematic. Analysis of IaC can
help where an organization has embraced infrastruc‑
ture automation practices and generates resulting IaC
artifacts. But there may be multiple IaC artifacts used
to instantiate an entire application and its supporting
infrastructure, all of which may be overridden by orga‑
nization‑level cloud configurations and settings.

Appropriate runtime security capabilities must be used
for the layers of a tech stack – the application layer,
workload layer, runtime layer, and network layer. Open
systems interconnection (OSI) may be a well‑under‑
stood mental model, but it’s not an exact fit for modern
architectures and security controls.

Cybersecurity Strategy Must Include Both
Shift‑Left and Shield‑Right Approaches

6

Similar to their DevOps counterparts, SecOps teams
also drown in alerts. Low‑hanging fruit, like the use of
known vulnerable libraries, poor coding practices, and
misconfigurations, leads to wasted cycles for security
teams chasing problems that could’ve been prevented.
Data can flood the organization’s security information
and event management (SIEM), inhibiting effective
threat detection and response. And if the SecOps work
is farmed out to a managed security services provider
(MSSP) or managed detection and response (MDR)
vendor, expect increased expense or failure to detect
an event quickly, if at all.

Mind the gaps

Gaps in information present another challenge. Log
data may not be retained long enough, resulting in
an inability to understand issues. Cloud providers may
not expose certain telemetry or instrumentation APIs,
further expanding the deficiencies.

Many organizations also face a skills gap. Enabling
DFIR for modern architectures is complex, and the
expertise of a SecOps analyst may be limited to appli‑
cations, containers, and serverless functions. A secu‑
rity operations center (SOC) may not even exist, or it
may be distributed or outsourced to a MSSP.

Shield‑right security needs subject matter experts
to validate legitimate problems when issues are
detected at runtime to address underlying problems
in code or to configure an appropriate security mitiga‑
tion. Traditionally, this requires collaboration among
numerous non‑security and security roles to determine
what happened, how to correct it, and who’s respon‑
sible for taking action. Security tooling can and should
be built to account for different personas in organiza‑
tions and how they respond to issues. This includes
capabilities like remediation tailored to an individu‑
al’s role and the application environment, prioritiza‑
tions based on actual risk, and workflow integrations
to serve as connective tissue between security and
insecurity worlds.

Security tooling can and
should be built to account
for different personas in
organizations and how
they respond to issues.

Cybersecurity Strategy Must Include Both
Shift‑Left and Shield‑Right Approaches

7

Effective cybersecurity programs
need both approaches
Adopting both shift‑left and shield‑right approaches
for processes and tooling, also known as DevSecOps,
creates a perpetual cycle of security and empowerment.

Shield‑right approaches, or runtime security, help
“stop the bleeding” where the organization knows it
has security gaps. These gaps often arise as a result of
rapidly changing, complex, distributed, and ephem‑
eral environments. Runtime security includes detective,
preventative, and responsive capabilities for issues that
bypass defenses or creep into the environment even
with testing.

Static security testing should be informed by runtime
intelligence to help prioritize risks and understand
what’s truly executed or exploitable. Security tooling

must provide appropriate context, including metadata
about where in the cloud vulnerabilities are located
– what region, cluster, and namespace – and work
across workload types whether they exist in cloud or
on‑premises environments.

Issues found in runtime must also factor into
engineering workflows to speed response and remedi‑
ation. Yes, organizations should raise alerts in their
security monitoring tools to notify SecOps teams and
track security risks. They should also initiate defect
tracking to provide a feedback loop to DevOps.
Security shouldn’t need to disrupt or impede the
engineering workflows in order to deliver value.

Conclusion: A perpetual
cycle of security
Cybersecurity programs need both shift‑left and shield‑right
approaches to security, or DevSecOps for full lifecycle security.

Application development, infrastructure engineering, and opera‑
tions have become closely intertwined as a byproduct of DevOps
practices. Likewise, security must be incorporated into DevOps
practices and toolchains, starting as early during coding.

With these two approaches working together, organizations
can quickly detect and respond to security incidents in cloud
and cloud‑native architectures. These are the underpinnings of
modern cybersecurity programs.

Copyright © 2023 Sysdig, Inc.
All rights reserved. PB‑014 Rev. B 03/23.

