
NIST 800-190
Application
Security Guide

NIST 800-190
Application Security Guide

2

Contents

Intro to Sysdig Secure 3

About NIST 800-190 5

Section 4.1 Image Countermeasures 7

4.1.1 Image vulnerabilities 7

Section 4.1.2 Image configuration defects 9

Section 4.1.3 Embedded malware 10

Section 4.1.4 Embedded clear text secrets 11

Section 4.1.5 Use of untrusted images 12

Section 4.2 Registry Countermeasures 13

Section 4.2.1 Insecure connections to registries 13

Section 4.2.2 Stale image in registry 13

Section 4.2.3 Insufficient authentication and authorization restrictions 13

Section 4.3 Orchestrator Countermeasures 14

Section 4.3.1 Unbounded administrative access 14

Section 4.3.2 Unauthorized access 15

Section 4.3.3 Poorly separated inter-container network traffic 16

Section 4.3.4 Mixing of workload sensitivity levels 19

Section 4.3.5 Orchestrator node trust 20

Section 4.4 Container Countermeasures 22

Section 4.4.1 Vulnerabilities within the runtime software 22

Section 4.4.2 Unbounded network access from containers 22

Section 4.4.3 Insecure container runtime configurations 25

Section 4.4.4 App vulnerabilities 26

Section 4.4.5 Rogue container 27

Section 4.5 Host OS Countermeasure 29

NIST 800-190
Application Security Guide

3

Intro to Sysdig Secure

Sysdig Secure brings together image scanning, run-time protection and forensics capabilities
to identify vulnerabilities, block threats, enforce compliance and audit activity across your
microservices.

Accelerate the development
of reliable, secure software

Build

A single platform to improve software development and reduce
risk at every stage of the lifecycle

• Measure service perfomance

• Microservice debugging

• Dectect vulnerable images

• Measure compliance

• Monitor application performance

• Block zero-day threats

• Proactively alert on incidents

• Reduce MTTR with forensics

• Capture detailed audit records

Build Run Respond

https://sysdig.com/products/secure/

NIST 800-190
Application Security Guide

4

Run

Respond

NIST 800-190
Application Security Guide

5

About NIST 800-190

The National Institute of Standards and Technology (NIST) is a physical sciences laboratory
and a non-regulatory agency of the United States Department of Commerce.

In their Special Publications (SP), the organization shares technical reports,
recommendations, practice guides, industry handbooks and other similar technical
documents intended for external distribution.

The SP 800-190 publication (usually referred as NIST 800-190) that is the focus of this
guide was published in September 2007. It describes the potential security concerns
associated with the use of containers and provides recommendations for addressing these
concerns.

It is a no-regulatory document, centered in container technologies, that comprises seven
main sections:

• Section 1: Introduction

• Section 2: Introduces containers, including their technical capabilities, technology
architectures and uses.

• Section 3: Explains the major risks for the core components of application container
technologies.

• Section 4: Recommends countermeasures for the risks identified in Section 3.

• Section 5: Defines threat scenario examples for containers.

• Section 6: Presents actionable information for planning, implementing, operating and
maintaining container technologies.

• Section 7: Conclusion

SP 800-190 also includes five appendices:

• Appendix A lists NIST resources for securing non-core components of container
technologies.

• Appendix B lists the NIST Special Publication 800-53 security controls and NIST
Cybersecurity Framework subcategories that are most pertinent to application container
technologies, explaining the relevancy of each.

• Appendix C provides an acronym and abbreviation list for the document.

• Appendix D presents a glossary of selected terms from the document.

• Appendix E contains a list of references for the document.

Sections 3 and 4 have the same subsection structure. While the focus is on explaining the
risks in Section 3, recommendations are presented for those risks in Section 4 .

https://csrc.nist.gov/publications/detail/sp/800-190/final

NIST 800-190
Application Security Guide

6

3.1. Image Risks 4.1. Image Countermeasures

3.1.1. Vulnerabilities 4.1.1. Vulnerabilities

3.1.2. Misconfiguration 4.1.2. Misconfiguration

3.1.3. Malware 4.1.3. Malware

3.1.4. Clear-text secrets 4.1.4. Clear-text secrets

3.1.5. Untrusted images 4.1.5. Untrusted images

3.2. Registry Risks 4.2. Registry Countermeasures

3.2.1. Insecure connections 4.2.1. Insecure connections

3.2.2. Stale images 4.2.2. Stale images

3.2.3. Insufficient authorization
restrictions

4.2.3. Insufficient authorization
restrictions

3.3. Orchestrator Risks 4.3. Orchestrator Countermeasures

3.3.1. Full administrative access 4.3.1. Full administrative access

3.3.2. Unauthorized access 4.3.2. Unauthorized access

3.3.3. Inter-container network traffic 4.3.3. Inter-container network traffic

3.3.4. Mixed workload sensitivity levels 4.3.4. Mixed workload sensitivity levels

3.3.5. Node trust 4.3.5. Node trust

3.4. Container Risks 4.4. Container Countermeasures

3.4.1. Vulnerabilities in the runtime 4.4.1. Vulnerabilities in the runtime

3.4.2. Unbounded network access from
containers

4.4.2. Unbounded network access from
containers

3.4.3. Insecure configurations 4.4.3. Insecure configurations

3.4.4. App vulnerabilities 4.4.4. App vulnerabilities

3.4.5. Rogue containers 4.4.5. Rogue containers

3.5. Host Risks 4.5. Host Countermeasures

3.5.1. Large attack surface 4.5.1. Large attack surface

3.5.2. Shared kernel 4.5.2. Shared kernel

3.5.3. Host component vulnerabilities 4.5.3. Host component vulnerabilities

3.5.4. Improper user access rights 4.5.4. Improper user access rights

3.5.5. File system tampering 4.5.5. File system tampering

We will follow the structure of section 4 subsections, explaining how Sysdig Secure
comprises features that have specific application to each of the risks described in the NIST
publication SP 800-190.

NIST 800-190
Application Security Guide

7

Section 4.1 Image Countermeasures

4.1.1 Image vulnerabilities
Sysdig Secure can integrate and monitor the risk and compliance of your images from build
to deployment.

• Build process integrations. Sysdig Secure can integrate with many CI/CD tools, like
Jenkins, Circle-CI, Gitlab CI/CD, Azure Pipelines, GitHub actions, Bamboo, AWS
CodePipeline and CodeBuild, and Tekton. Also, other integrations are possible via API.

• Registry Integrations. Sysdig Secure can scan images stored in any Docker V2
compatible registry, such as CoreOS Quay, Amazon ECR, Docker Private Registries,
Google Container Registry, JFrog Artifactory, Microsoft ACR, SuSE Portus and VMWare
Harbor. Check out this post about Sysdig scanning images stored in Azure Container
Registry.

• Run-time Integrations. Sysdig Secure validates that images that are running have been
scanned as part of the CI/CD process, or within a registry. If images haven’t been
scanned, a team can alert and trigger actions. For images that were scanned earlier in
the CI/CD process or in a registry, Sysdig Secure tracks the status of the images that
are running and can alert if new vulnerabilities are discovered in contents of the running
images.

https://sysdig.com/blog/docker-scanning-jenkins/
https://sysdig.com/blog/image-scanning-circleci/
https://sysdig.com/blog/gitlab-ci-cd-image-scanning/
https://sysdig.com/blog/image-scanning-azure-pipelines/
https://sysdig.com/blog/image-scanning-github-actions/
https://sysdig.com/blog/bamboo-sysdig-secure/
https://sysdig.com/blog/image-scanning-aws-codepipeline-codebuild/
https://sysdig.com/blog/image-scanning-aws-codepipeline-codebuild/
https://sysdig.com/blog/securing-tekton-pipelines-openshift/
https://sysdig.com/blog/scanning-images-in-azure-container-registry/
https://sysdig.com/blog/scanning-images-in-azure-container-registry/

NIST 800-190
Application Security Guide

8

The Sysdig scanning engine stores all of the final OS files, packages and language specific
packages of a container. This means we’ll get contents from all layers, and not flag false
positives for packages that may have been introduced in one layer and then removed in
another. These reports are available via the Sysdig Secure console, directly within Jenkins,
and can be exported via the API.

Sysdig Secure can also implement metadata driven run-time policies for different
environments (dev, prod, test) namespaces, clusters, etc. This makes it easy to enforce a
different set of policies and actions that are relevant to each environment.

Here are a couple examples of image policy evaluation rules we’ve seen organizations put in
place before images are deployed into production.

NIST 800-190
Application Security Guide

9

Security

• Does the image have critical vulnerabilities with a fix?

• Are there secrets or credentials exposed in the image?

• Does this image have exposed ports that I’ve blacklisted?

Compliance

• What license types is the image using?

• Is this image built on a distribution our organization doesn’t use?

Reliability

• Does my image have health checks?

• Are my developers building large images that can impact our infrastructure?

• Are my developers using an unofficial version of Ruby, Node, Java or Python packages?

Section 4.1.2 Image configuration defects
1. The policies mentioned in the section above map to many of the secure configuration

settings and third-party best practices. Sysdig Secure will integrate with many different
third-party vulnerability sources to make sure images are using vulnerability free and
standard OS packages.

 Ҋ Once an image is running in an organization’s environment, Sysdig Secure has a
robust set of default rulesets from our open source detection engine, Falco. Falco
rules will detect suspicious behaviors such as sensitive mounts, unexpected inbound/
outbound activity, and the modification of system binaries.

2. Sysdig Secure creates a robust set of artifacts as part of the image analysis process (like
a fingerprint database for container images). Because Sysdig Secure has stored all of
the OS Packages, files and other contents of the image, we can update the status of the
image in real time as updates come in from different feeds, all without having to rescan
the image. This means that even a running container will be flagged, without rescanning,
if a new CVE is discovered for it.

NIST 800-190
Application Security Guide

10

3. Sysdig Secure can integrate with Kubernetes Admission controllers to prevent vulnerable
and non-compliant images from running on the clusters. Also, once containers are
running, Sysdig Secure will actively monitor those containers with 200+ compliance
checks to make sure the configuration of a container doesn’t drift during its lifespan.
Sysdig Secure has the option to fail an image build as well as stop or pause running
containers if vulnerabilities or undesirable activity is detected.

4. Sysdig Secure Runtime security can enforce only trusted containers to be allowed,
deployed and run (even if doing so manually outside of an orchestrator or automation
tool). Sysdig Secure is also continually updating its CVE database, and comparing with
all image fingerprints, running containers will also be identified if new CVEs that affect
running workloads are released .

Section 4.1.3 Embedded malware
Sysdig Secure Runtime policies allow real-time enforcement to prevent containers from
doing undesirable activities, such as running additional/unknown executables, opening
unexpected ports, and performing questionable activity on the underlying host.

NIST 800-190
Application Security Guide

11

Section 4.1.4 Embedded clear text secrets
Sysdig Secure can detect if secrets, credentials or other pieces of sensitive data are included
in an image, and can fail a build if that sensitive info is baked into the container image. This
will help ensure that developers are following best practices and organizations use the
native secrets management tooling effectively.

Here’s an example JSON output of a rule that can be used to scan using a regex for
potential secrets, credentials or other sensitive data.

 “rules”: [
 {
 “id”: “f9e2e33c-46fa-4578-8f39-e8aa4ad559df”,
 “trigger”: “CONTENTMATCH”,
 “params”: [
 {
 “name”: “SECRETCHECK_CONTENTREGEXP”,
 “value”: “.*\.pem”
 }
],
 “action”: “STOP”,
 “gate”: “SECRETCHECK”
 }

Here’s a Falco rule included in Sysdig Secure rules library that detects a grep execution
trying to find private keys or passwords:

 rule: Search Private Keys or Passwords
 desc: >
 Detect grep private keys or passwords activity.
 condition: >
 (spawned_process and
 ((grep_commands and private_key_or_password) or
 (proc.name = “find” and (proc.args contains “id_rsa” or
 proc.args contains “id_dsa”))))
 output: >
 Grep private keys or passwords activities found
 (user=%user.name command=%proc.cmdline container_id=%container.id
 container_name=%container.name
 image=%container.image.repository:%container.image.tag)
 priority: WARNING
 tags: [process, mitre_credential_access]

NIST 800-190
Application Security Guide

12

Section 4.1.5 Use of untrusted images
Sysdig Secure can configure custom rules to kill containers that are from outside a known
list of trusted registries. This helps protect against the common developer practice of pulling
down images directly from Dockerhub. Here’s an example Falco rule to detect this behavior:

- rule: image_from_external_registry
 desc: Container launched with an image from an external registry
 condition: >
 evt.type=execve and proc.vpid=1 and not container.id = host
 and not container.image startswith registry.gitlab.com
 and proc.cmdline startswith runc
 output: >
 container launched from external image
 (user=%user.name command=%proc.cmdline %container.info
 image=%container.image)
 priority: NOTICE

Sysdig Secure will track the status of all of the different repositories that we’ve analyzed
within the registry, as well as the images that are running live within your environment. If
the status of any of these images changes, Sysdig Secure can alert users that the risk of that
image has increased.

Sysdig Secure can be integrated into image build pipelines, such as Jenkins. This pipeline
can be extended to cryptographically sign a container image that has passed the Sysdig
Secure Image Scanning process. Sysdig Secure Runtime Security can then be used to
restrict the running of containers that don’t come from trusted sources, such as those being
cryptographically signed.

NIST 800-190
Application Security Guide

13

Section 4.2 Registry Countermeasures

Section 4.2.1 Insecure connections to registries
Sysdig Secure is designed to complement a secured registry. If this registry is run within a
Sysdig Secure environment (with the agent monitoring and enforcing the host), then standard
Sysdig Secure Runtime policies can be used to limit undesirable activity. However, Sysdig
Secure should be used to extend a robust security policy of any application, including adequate
firewalls, role based access controls, authentication enforcement and access auditing.

Section 4.2.2 Stale image in registry
Sysdig Secure can be used to only allow authorized container images, including restrictions
on version or tags such as ‘latest.’ Combined with Sysdig Secure Image Scanning, this
helps support an image management workflow to ensure that only authorized images and
versions are used, and kept up-to-date accordingly.

Section 4.2.3 Insufficient authentication and
authorization restrictions
Sysdig Secure is designed to complement a secured registry. If this registry is run within
a Sysdig Secure environment (with the agent monitoring and enforcing the host), then
standard Sysdig Secure Runtime policies can be used to limit undesirable activity. However,
Sysdig Secure can be used to extend existing security policies (role based access controls,
authentication enforcement and access auditing). Sysdig Secure itself can be secured with
the use role based access control (teams) as covered in 4.3.1.

NIST 800-190
Application Security Guide

14

Section 4.3 Orchestrator Countermeasures

Section 4.3.1 Unbounded administrative access
Sysdig Secure provides rich service-based access control to the data that is coming from
your containerized applications. By using Sysdig Secure “Teams”, cluster operators can scope
data with labels from hosts, containers, orchestrators and cloud providers to only show the
content that is relevant to those application teams.

NIST 800-190
Application Security Guide

15

We can detect full Kubernetes administrative access with a Falco rule available in Sysdig
Secure’s rules library.

- rule: Full K8s Administrative Access
 desc: >
 Detect any k8s operation by an administrator with full access.
 condition: >
 kevt
 and non_system_user
 and ka.user.name in (admin_k8s_users)
 and not allowed_full_admin_users
 output: >
 K8s Operation performed by full admin user
 (user=%ka.user.name target=%ka.target.name/%ka.target.resource
 verb=%ka.verb uri=%ka.uri resp=%ka.response.code)
 priority: WARNING
 source: k8s_audit
 tags: [k8s]

Section 4.3.2 Unauthorized access
In addition to Sysdig Secure Teams covered in 4.3.1, single sign-on and centralized
authentication can be used with Sysdig, such as LDAP, Active Directory, Google Auth,
SAML and OpenID. We also recommend either running the Sysdig backend components
on infrastructure that is encrypted (such as AWS EBS encrypted volumes), or leveraging
Sysdig’s own fully managed and secured SaaS platform.

At Sysdig, we provide robust dashboards for inventory management of containers, hosts,
pods, deployments or any other construct that an organization needs to monitor.

NIST 800-190
Application Security Guide

16

You can find a Falco rule in the Sysdig Secure rules library to detect that an anonymous
request to the Kubernetes API of a cluster has been allowed.

- rule: Anonymous Request Allowed
 desc: >
 Detect any request made by the anonymous user that was allowed
 condition: >
 kevt and ka.user.name=system:anonymous and
 ka.auth.decision!=reject and not health_endpoint
 output: >
 Request by anonymous user allowed (user=%ka.user.name
 verb=%ka.verb uri=%ka.uri reason=%ka.auth.reason))
 priority: WARNING
 source: k8s_audit
 tags: [k8s]

Section 4.3.3 Poorly separated inter-container
network traffic
While Sysdig Secure is not responsible for configuring network segmentation (VLANs, VPCs,
subnets, routing, firewall rules, etc.), it can help you visualize the connectivity between both
the Orchestrators, as well as the containers running within the Orchestrator. Below is a
network topology map that highlights the traffic flowing between these components.

The following screenshot illustrates the traffic communication within the application
‘example-java-app’ and also the traffic coming into the ‘kube-system’ components, including
coredns. This is a dynamic communication map and shows actual communication between
every component. This also includes external communication points, shown here as an

NIST 800-190
Application Security Guide

17

‘n/a’ group, as the external component does not include the relevant Kubernetes metadata
information.

This information can be further complemented with Sysdig’s capability to show connection
table information (as shown below), and also with Sysdig’s forensic capability to deeply
interrogate and analyze questionable connections and activities.

NIST 800-190
Application Security Guide

18

For containers that should never be exposed to external traffic because they only service
other containers in the cluster, a Falco rule can detect whenever an inbound or outbound
external connection has been established.

- rule: Network connection outside local subnet
 desc: >
 Scoped images should only receive and send traffic
 to local subnet
 condition: >
 enabled_rule_network_only_subnet and
 inbound_outbound and
 container and
 not network_local_subnet and
 not k8s.pod.labels in
 (labels_whitelist_network_outside_subnet) and
 scope_network_only_subnet and
 k8s.ns.name in (namespace_scope_network_only_subnet)
 output: >
 Detected network connection outside local subnet
 (command=%proc.cmdline connection=%fd.name user=%user.name
 container_id=%container.id image=%container.image.repository
 namespace=%k8s.ns.name fd.rip.name=%fd.rip.name
 fd.lip.name=%fd.lip.name fd.cip.name=%fd.cip.name
 fd.sip.name=%fd.sip.name)
 priority: WARNING
 tags: [network, NIST, NIST_3.3, PCI, PCI_DSS_6.4.2]

NIST 800-190
Application Security Guide

19

Section 4.3.4 Mixing of workload sensitivity levels
Coupled with our topology maps and connectivity information, we also leverage
Orchestrator metadata to help group workloads together. This can make it easy to
distinguish different security zones and applications, as well as identify any communication
between them that maybe shouldn’t exist. In the screenshot below, we see two
independent Kubernetes clusters that happen to be hosted in different cloud providers, but
could simply be hosted on physically isolated infrastructure. The topology map highlights
where we have inter-cluster communication between these potentially security isolated
environments.

NIST 800-190
Application Security Guide

20

Section 4.3.5 Orchestrator node trust
In addition to the capabilities provided by Sysdig above, the metadata that Sysdig ingests
from the Orchestrators makes it easy to focus topology maps and dashboards with very
specific requirements. In the following screenshot, the scope has been narrowed to the
kube-system namespace and isolated by cluster. We have clicked the ‘traefik’ pod in the first
cluster in order to highlight the traffic flow, and can see that this is talking to the ‘coredns’
pods in the second cluster. This helps identify and prove whether cluster resources within
the orchestrator are fully isolated, or as highlighted here, share dependencies and support
cluster inter-communication.

NIST 800-190
Application Security Guide

21

Falco rules can detect when a node that’s not in a whitelist tries to join the cluster, or when
it successfully joins it.

- rule: Untrusted Node Successfully Joined the Cluster
 desc: >
 Detect a node successfully joined the cluster outside
 of the list of allowed nodes.
 condition: >
 kevt and node
 and kcreate
 and response_successful
 and not allow_all_k8s_nodes
 and not ka.target.name in (allowed_k8s_nodes)
 output: >
 Node not in allowed list successfully joined the cluster
 (user=%ka.user.name node=%ka.target.name)
 priority: ERROR
 source: k8s_audit
 tags: [k8s]

- rule: Untrusted Node Unsuccessfully Tried to Join the Cluster
 desc: >
 Detect an unsuccessful attempt to join the cluster for a node
 not in the list of allowed nodes.
 condition: >
 kevt and node
 and kcreate
 and not response_successful
 and not allow_all_k8s_nodes
 and not ka.target.name in (allowed_k8s_nodes)
 output: >
 Node not in allowed list tried unsuccessfully to join the cluster
 (user=%ka.user.name node=%ka.target.name
 reason=%ka.response.reason)
 priority: WARNING
 source: k8s_audit
 tags: [k8s]

NIST 800-190
Application Security Guide

22

Section 4.4 Container Countermeasures

Section 4.4.1 Vulnerabilities within the runtime software
Sysdig Secure has agents on every node in the cluster to monitor all of the containers that
are deployed in the environment. Sysdig Secure monitors the running images and evaluates
those against the image policies defined by the platform administrators. This can be used
to both prevent known vulnerabilities from being deployed, and from zero day attacks from
being executed (or a more common scenario, simply preventing uninformed users from
doing things they aren’t aware they shouldn’t do).

Several Falco rules will help you detect abnormal network connections, like the following
one to detect attempts to use Kubernetes NodePorts from a container.

- rule: Unexpected K8s NodePort Connection
 desc: Detect attempts to use K8s NodePorts from a container
 condition: >
 (inbound_outbound) and fd.sport >= 30000 and
 fd.sport <= 32767 and container and
 not nodeport_containers
 output: >
 Unexpected K8s NodePort Connection (command=%proc.cmdline
 connection=%fd.name container_id=%container.id
 image=%container.image.repository)
 priority: NOTICE
 tags: [network, k8s, container, mitre_port_knocking]

Section 4.4.2 Unbounded network access from
containers
Sysdig provides automatic discovery of containers and Kubernetes nodes and services with
a real-time topology map showing all containers, hosts and processes. You can also see
connections across namespaces, clusters, and hosts.

The below screenshot illustrates the traffic communication within the application ‘example-
java-app’ and also the traffic coming into the ‘kube-system’ components, including coredns.
This is a dynamic communication map and details actual communication between every
component. This also includes external communication points, shown here as ‘n/a’. The
external component doesn’t include the relevant Kubernetes metadata information which is
why it’s grouped as ‘n/a’.

NIST 800-190
Application Security Guide

23

This information can be further complemented with Sysdig capability to show connection
table information (as shown below), and also with Sysdig forensic capabilities to deeply
interrogate and analyze questionable connections and activities.

NIST 800-190
Application Security Guide

24

As the definitive line of defense, Sysdig Secure can detect malicious activity at runtime, such
as a terminal shell launching within a container, and execute actions like stopping or pausing
the container. In addition to this, a system capture can be taken which can then be used to
forensically analyze the event. This forensic analysis is vitally important in understanding
how an undesirable event happened, potentially leading to the detection of zero day
vulnerabilities or unidentified code exploits.

The Falco rule available in Sysdig Secure rules library to detect a terminal shell spawn in a
container is the following:

- rule: Terminal shell in container
 desc: >
 A shell was used as the entrypoint/exec point into a container
 with an attached terminal.
 condition: >
 spawned_process and container
 and shell_procs and proc.tty != 0
 and container_entrypoint
 output: >
 A shell was spawned in a container with an attached terminal
 (user=%user.name %container.info shell=%proc.name
 parent=%proc.pname cmdline=%proc.cmdline terminal=%proc.tty
 container_id=%container.id image=%container.image.repository)
 priority: NOTICE
 tags: [container, shell, mitre_execution]

NIST 800-190
Application Security Guide

25

Section 4.4.3 Insecure container runtime
configurations
Sysdig Secure has automated the ability to continuously assess the compliance of
containerized infrastructure with the CIS Docker Benchmark and the CIS Kubernetes
Benchmark.

These results are exposed in two different formats. The first is metrics that can be used to
monitor and alert on how your compliance posture is changing over time, so you know if
your security posture is getting better or worse. The second is a report for auditors that is
automatically generated from reports that facilitate the audit process.

You can detect that a privileged container has been launched at any time using this Falco
rule available at the Sysdig Secure rules library:

NIST 800-190
Application Security Guide

26

- rule: Launch Privileged Container
 desc: >
 Detect the initial process started in a privileged container.
 Exceptions are made for known trusted images.
 condition: >
 container_started and container
 and container.privileged=true
 and not falco_privileged_containers
 and not user_privileged_containers
 output: >
 Privileged container started (user=%user.name
 command=%proc.cmdline %container.info
 image=%container.image.repository:%container.image.tag)
 priority: INFO
 tags: [container, cis, mitre_privilege_escalation, mitre_lateral_
movement]

Section 4.4.4 App vulnerabilities
Sysdig Secure Runtime Security can be leveraged to detect application anomalies, alert and
take action. Standard Sysdig Secure Runtime Security policies include the following whitelist
/ blacklist controls:

• Processes (i.e. mysqld, ssh, nginx, etc.)

• Container Images (i.e. cassandra, mongo:latest, nginx@sha256:a119c62...162d8b5, etc)

• Network Connections (i.e. 80, 443, TCP/UDP, etc.)

• Filesystem Operations (i.e. read or read/write operations
to /etc, /var, /dev, /proc, etc.)

• System Calls (i.e. open, execve, chmod, chroot, etc.)

In addition to these controls, more advanced policies can include selective logic by using
Falco rules from the rules library, or by creating your own. For example, this is a Falco rule
available at the rules library that detects a modification of a binary executable under any of
the registered binary directories.

NIST 800-190
Application Security Guide

27

- rule: Modify binary dirs
 desc: >
 An attempt to modify any file below a set of binary directories.
 condition: >
 (bin_dir_rename) and
 modify and not package_mgmt_procs and
 not exe_running_docker_save
 output: >
 File below known binary directory renamed/removed
 (user=%user.name command=%proc.cmdline
 pcmdline=%proc.pcmdline operation=%evt.type file=%fd.name
 %evt.args container_id=%container.id
 image=%container.image.repository)
 priority: ERROR
 tags: [filesystem, mitre_persistence]

Section 4.4.5 Rogue container
At Sysdig, we automatically leverage an orchestrator’s metadata, as well as any additional
metadata (such as labels, tags, custom Sysdig Agent tags, etc.), and allow users to organize
/ create topologies views using this information. In addition, our full role-based access
control (‘Teams’) allows views to be isolated and designed around a least-privileged model to
ensure that users only see information that is relevant to them. This metadata is also used
to apply Sysdig Secure policies and alerts. For example, any workload tagged as ‘Test’ will
automatically inherit a ‘Test’ security policy and the relevant alerts. This allows us to drop
straight into any environment and not change any practices, but still provide the benefit of
enforcement and alerting.

NIST 800-190
Application Security Guide

28

We also monitor user activity and orchestrator events. This means that a full audit is
available and stored completely off box, so there is no ability to tamper with this. The audit
includes commands as well as orchestrator events (such as Kubernetes scaling, Docker kill,
etc.) and can be extended with other events (such as Jenkins jobs, Splunk events, etc.)

- rule: Create Disallowed Pod
 desc: >
 Detect an attempt to start a pod with a container image outside
 of a list of allowed images.
 condition: kevt and pod and kcreate and not allowed_k8s_containers
 output: >
 Pod started with container not in allowed list
 (user=%ka.user.name pod=%ka.resp.name ns=%ka.target.namespace
 images=%ka.req.pod.containers.image)
 priority: WARNING
 source: k8s_audit
 tags: [k8s]

NIST 800-190
Application Security Guide

29

Section 4.5 Host OS Countermeasure
Sysdig Secure Runtime Security can detect activities on the host OS, as well as within
containers. The benefit of this is to provide a similar level of protection on the host OS as
with the containers. However, Sysdig Secure provides security, compliance and monitoring
for containers and Kubernetes platforms. Sysdig recommends following the NIST Guide for
General Service Security. Sysdig should be a complimentary component to cover container
and Kubernetes security, that is part of an overall security strategy.

Sysdig Secure has default policies that look for malicious behavior (i.e. sensitive mounts, writes
below /etc, attempts to modify a binary directory) and many other default rules that look for
unexpected file activity. If a policy is violated, actions can be taken to kill or pause a container.

- rule: Launch Sensitive Mount Container
 desc: >
 Detect the initial process started by a container that has a
 mount from a sensitive host directory (i.e. /proc).
 Exceptions are made for known trusted images.
 condition: >
 container_started and container
 and sensitive_mount
 and not falco_sensitive_mount_containers
 and not user_sensitive_mount_containers
 output: >
 Container with sensitive mount started (user=%user.name
 command=%proc.cmdline %container.info
 image=%container.image.repository:%container.image.tag
 mounts=%container.mounts)
 priority: INFO
 tags: [container, cis, mitre_lateral_movement]

To learn more about how Sysdig Secure validates compliance visit
https://sysdig.com/products/kubernetes-security/container-compliance/

You can also sign-up for a Sysdig Secure free 30-day trial at
https://sysdig.com/company/free-trial/

www.sysdig.com

Copyright ©️ 2020 Sysdig, Inc. All rights reserved. Guide-004 Rev. A 4/20

https://sysdig.com/products/kubernetes-security/container-compliance/
https://sysdig.com/company/free-trial/
http://www.sysdig.com

	_30j0zll
	_9nx1xb6nosrp
	3znysh7
	_GoBack
	2et92p0
	_tyjcwt
	_1t3h5sf
	_4d34og8
	_nb818yzf77vn
	_ilb0kgepzekf
	_ecsj6dljj74o
	_uxkeky1gpneq
	_vxvohqv9o15q
	_px5fm6rb1pi3
	_sj74lempoymq
	_wlorq1ov0o0s
	_26in1rg
	_cfkcsosbw63q
	_vy10dkbm4eyq
	_2nzrzjt5q7nv
	_2s3fpp8n8nkd
	_cdoakz3zc8km
	_mryxj11j4r7j
	_z337ya
	_1y810tw
	_2xcytpi
	_yqe97uhqicn9
	_2itkr4ewc5uz

